Analytical method for finding the nullspace of stiffness matrix in the finite element method

Author(s):  
Li Xue ◽  
Dan Jiao
Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


2019 ◽  
Vol 135 ◽  
pp. 01037
Author(s):  
Vladimir Andreev ◽  
Lyudmila Polyakova

The purpose of the work is to compare two calculation methods using the example of solving the axisymmetric thermoelasticity problem. The calculation of a thick-walled cylindrical three-layer shell on the temperature effect was carried out by the numerical-analytical method and the finite element method implemented in the LIRA-CAD software package. In the calculation, a piecewise linear inhomogeneity of the shell due to its three-layer structure and continuous inhomogeneity caused by the influence of a stationary temperature field is taken into account. The numerical-analytical method of calculation involves the derivation of a resolving differential equation, which is solved by the sweep method, it is possible to take into account the nonlinear nature of the deformation of the material using the method of successive approximations. To solve this problem by the finite element method, a similar computational model of the shell was constructed in the LIRA-CAD software package. The solution of the problem of thermoelasticity for an infinite cylinder (under conditions of a plane deformed state) and for a cylinder of finite length with free ends is given. Comparison of the calculation results is carried out according to the obtained values of ring stresses.


2019 ◽  
Vol 794 ◽  
pp. 220-225
Author(s):  
Daiki Towata ◽  
Yuichi Tadano

In this study, a novel numerical method to analyze the bifurcation problemof a rate dependent material using the finite element method is proposed. The consistent stiffness matrix, which is required for a bifurcation analysis using the finite element method, for a rate dependent material is generally hard to compute, therefore, a computational method to calculate the tangent stiffness matrix based on a numerical differential is introduced so that exact bifurcation analyses for the rate dependent material can be conducted. A numerical example of the proposed method is demonstrated, and the adequacy of the proposed method is discussed.


1983 ◽  
Vol 50 (1) ◽  
pp. 95-100 ◽  
Author(s):  
H. A. Mang ◽  
R. H. Gallagher

Consideration of the dependence of hydrostatic pressure on the displacements may result in significant changes of calculated buckling loads of thin arches and shells in comparison with loads calculated without consideration of this effect. The finite element method has made it possible to quantify these changes. On the basis of a shell theory of small displacements but moderately large rotations, this paper derives consistent incremental equilibrium equations for tracing, via the finite element method, the load-displacement path for thin shells subjected to nonuniform hydrostatic pressure and establishes the buckling condition from the incremental equilibrium equations. Within the framework of the finite element method, the character of hydrostatic pressure as one of a follower load is represented in the so-called pressure-stiffness matrix. For shells with loaded free edges, this matrix is unsymmetric. The principal objective of the present paper is to demonstrate that symmetrization of the pressure stiffness matrix resulting from linearization of the buckling condition yields buckling loads that are identical to the eigenvalues resulting from first-order perturbation analysis of the unsymmetric eigenproblem. A circular cylindrical shell with a free and a hinged end, subjected to hydrostatic pressure, is used as an example of the admissibility of symmetrizing the pressure stiffness matrix and for assessing its effect.


2011 ◽  
Vol 138-139 ◽  
pp. 399-403
Author(s):  
Chun Liang Dong ◽  
Xiao Yu Lu

In order to calculate the interaction between complicated foundation and sluice plate conveniently, an effective method was proposed to solve this problem in the paper. This method regarded the sluice plate and foundation as two substructures, which are connected with chain-bars. The unit displacement of the sluice plate and the settlement of the foundation surface are calculated by the analytical method and the finite element method, respectively. And the counter-force of the foundation is calculated by the mixed method. At the same time, the displacement and internal force are calculated by the principle of superposition. All the results reflect the interaction effect between the sluice plate and foundation fairly good.


Author(s):  
S Feng ◽  
HP Geng ◽  
L Yu

A quill-shaft coupling-rotor-bearing system is modeled and reported in this paper. The system consists of two rotors connected by a quill-shaft coupling in which each rotor is supported by two bearings. The stiffness matrix of the quill-shaft coupling is deduced and the equation of motion of the system is obtained by using the finite element method. Finally, the rotordynamics analysis of the system is conducted. The numerical results show that more frequency veering points occur for the quill-shaft coupling-rotor-bearing system compared with those of single rotor. In addition, the stiffness of the flexural element has significant effects on the first bending natural frequency of the quill shaft when the length of the quill shaft becomes shorter.


Author(s):  
Lyudmila S. Polyakova ◽  
Vladimir I. Andreev

The aim of research is to compare two calculation methods using the example of solving the axisymmetric thermoelasticity problem. Methods. The calculation of a thick-walled cylindrical shell on the temperature effect was carried out by the numerical-analytical method and the finite element method, implemented in the LIRA-CAD software package. The shell consists of three layers: two layers of heat-resistant concrete and an outer steel layer. In the calculation, a piecewise linear inhomogeneity of the shell due to its three-layer structure and continuous inhomogeneity caused by the influence of a stationary temperature field is taken into account. The numerical-analytical method of calculation involves the derivation of a resolving differential equation, which is solved by the sweep method, it is possible to take into account the nonlinear nature of the deformation of the material using the method of successive approximations. To solve this problem by the finite element method, a similar computational model of the shell was constructed in the LIRA-CAD software package. The solution of the problem of thermoelasticity for an infinite cylinder (under conditions of a plane deformed state) and for a cylinder of finite length with free ends is given. Results . Comparison of the calculation results is carried out according to the obtained values of ring stresses σθ.


Sign in / Sign up

Export Citation Format

Share Document