Optimal control design approach based on a multipoint approximation method

Author(s):  
O. Hancu ◽  
V. Maties ◽  
R. Balan
CIRP Annals ◽  
1998 ◽  
Vol 47 (1) ◽  
pp. 301-306 ◽  
Author(s):  
Robert G. Landers ◽  
Galip A. Ulsoy

Author(s):  
T. N. Kigezi ◽  
J. F. Dunne

A general design approach is presented for model-based control of piston position in a free-piston engine (FPE). The proposed approach controls either “bottom-dead-center” (BDC) or “top-dead-center” (TDC) position. The key advantage of the approach is that it facilitates controller parameter selection, by the way of deriving parameter combinations that yield both stable BDC and stable TDC. Driving the piston motion toward a target compression ratio is, therefore, achieved with sound engineering insight, consequently allowing repeatable engine cycles for steady power output. The adopted control design approach is based on linear control-oriented models derived from exploitation of energy conservation principles in a two-stroke engine cycle. Two controllers are developed: A proportional integral (PI) controller with an associated stability condition expressed in terms of controller parameters, and a linear quadratic regulator (LQR) to demonstrate a framework for advanced control design where needed. A detailed analysis is undertaken on two FPE case studies differing only by rebound device type, reporting simulation results for both PI and LQR control. The applicability of the proposed methodology to other common FPE configurations is examined to demonstrate its generality.


2000 ◽  
Author(s):  
Chunhao Joseph Lee ◽  
Constantinos Mavroidis

Abstract This paper presents robust and optimal control methods to suppress vibrations of flexible payloads carried by robotic systems. A new improved estimator in discrete-time H2 optimal control design based on the Kalman Filter predictor form is developed here. Two control design methods using state-space models, LQR and H2 Optimal Design, in discrete-time domain are applied and compared. The manipulator joint encoders and the wrist-mounted six-degree-of-freedom force/torque sensor provide the control feedback. A complete dynamic model of the robot/payload system is taken into account to synthesize the controllers. Experimental verifications of both methods are performed using a Mitsubishi five-degree-of-freedom robot manipulator that carries a flexible beam. It is shown that both methods damp out the vibrations of the payload very effectively.


Sign in / Sign up

Export Citation Format

Share Document