Molecular Dynamics Simulation of the Dissociation Characteristics of Epoxy Resin under the Effect of PD Active Products Based on ReaxFF

Author(s):  
Jiakai Chi ◽  
Yunqi Xing ◽  
Xingyu Zhang ◽  
Huibin Liu ◽  
Yanwei Wang
2017 ◽  
Vol 111 ◽  
pp. 60-67 ◽  
Author(s):  
Wenqing Zhang ◽  
Yang Qing ◽  
Weihong Zhong ◽  
Gang Sui ◽  
Xiaoping Yang

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Lijuan Li ◽  
Dajing Qin ◽  
Zhijun Xu ◽  
Yong Feng

Rubber concrete has high environmental and economic benefits. However, the difference in the physical and chemical properties of the interface causes a weak interface between rubber and concrete, which limits the use of rubber concrete to a certain extent. Based on the macroexperiment of epoxy resin (EP) modified rubber concrete, from the nanoscale level, three interface models of Rh (natural rubber)/C-S-H, EP/C-S-H, and Rh/EP/C-S-H were constructed by molecular dynamics simulation to explore the interaction between epoxy resin and rubber cement-based interface and reveal its microreinforcement mechanism. The results of interaction energy, radial distribution function, and mean square displacement show that the addition of EP not only improves the interface interaction energy between Rh and C-S-H but also provides a large number of hydrogen bond donors and receptors, promotes the diffusion of Ca, and increases the adhesion between Rh and cement matrix. The results of the analysis of mechanical properties show that the elastic modulus of the rubber concrete interface model is improved and the interface properties are improved after adding EP.


2019 ◽  
Vol 9 (14) ◽  
pp. 2832 ◽  
Author(s):  
Jiacai Li ◽  
Jiming Chen ◽  
Mingxiao Zhu ◽  
Henggao Song ◽  
Hongyu Zhang

The interface between nanofillers and matrix plays a key role in determining the properties of nanocomposites, but the interfacial characteristics of nanocomposites such as molecular structure and interaction strength are not fully understood yet. In this work, the interfacial features of a typical nanocomposite, namely epoxy resin (EP) filled with boron nitride nanosheet (BNNS) are investigated by utilizing molecular dynamics simulation, and the effect of surface functionalization is analyzed. The radial distribution density (RDD) and interfacial binding energy (IBE) are used to explore the structure and bonding strength of nanocomposites interface. Besides, the interface compatibility and molecular chain mobility (MCM) of BNNS/EP nanocomposites are analyzed by cohesive energy density (CED), free volume fraction (FFV), and radial mean square displacement (RMSD). The results indicate that the interface region of BNNS/EP is composed of three regions including compact region, buffer region, and normal region. The structure at the interfacial region of nanocomposite is more compact, and the chain mobility is significantly lower than that of the EP away from the interface. Moreover, the interfacial interaction strength and compatibility increase with the functional density of BNNS functionalized by CH3–(CH2)4–O– radicals. These results adequately illustrate interfacial characteristics of nanocomposites from atomic level.


Sign in / Sign up

Export Citation Format

Share Document