Internal model control of a paper machine headbox time-delay system with uncertain parameters in discrete-time

Author(s):  
Marwa Hannachi ◽  
Ikbel Bencheikh Ahmed ◽  
Dhaou Soudani
Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 264
Author(s):  
Meiying Jiang ◽  
Beiyan Jiang ◽  
Qi Wang

It is a challenge to design a satisfactory controller for a complex multivariable industrial system with minimal offsetting and a slow response. An internal model control method is proposed for rank-deficient systems with a time delay based on a damped pseudo-inverse. An internal model control was designed to obtain the desired dynamic characteristics of the system by transforming the time-delay system into a system without a time delay, following the Pade approximation approach. By introducing a damping factor, the internal model controller was designed based on a damped pseudo-inverse, since the inverse matrix of the rank-deficient system does not exist. Furthermore, a singular value decomposition was used to analyze the steady-state performance of the system. The selection of the damping factor was also presented, and a μ analysis was made to evaluate the stability of the system. To demonstrate the effectiveness of the proposed method, a crude distillation process with five inputs and four outputs was considered as an example. The simulation results illustrate that not only can the proposed strategy guarantee the system’s stability, but it also has a relatively good dynamic performance.


2014 ◽  
Vol 625 ◽  
pp. 478-481
Author(s):  
Lemma Dendena Tufa ◽  
Marappagounder Ramasamy

A novel PID controller identification method based on internal model control structure is proposed. The proposed method avoids the necessity of approximating the time delay for designing the PID controller. It results in a robust and effective PID controller tuning. The method is effective for both time constant and time delay dominant systems, with much improved performance for the latter case.


Sign in / Sign up

Export Citation Format

Share Document