Multiple fault simulation with random and clustered fault injection

Author(s):  
C.E. Stroud ◽  
C.A. Ryan
Author(s):  
Rommel Estores ◽  
Karo Vander Gucht

Abstract This paper discusses a creative manual diagnosis approach, a complementary technique that provides the possibility to extend Automatic Test Pattern Generation (ATPG) beyond its own limits. The authors will discuss this approach in detail using an actual case – a test coverage issue where user-generated ATPG patterns and the resulting ATPG diagnosis isolated the fault to a small part of the digital core. However, traditional fault localization techniques was unable to isolate the fault further. Using the defect candidates from ATPG diagnosis as a starting point, manual diagnosis through fault Injection and fault simulation was performed. Further fault localization was performed using the ‘not detected’ (ND) and/or ‘detected’ (DT) fault classes for each of the available patterns. The result has successfully deduced the defect candidates until the exact faulty net causing the electrical failure was identified. The ability of the FA lab to maximize the use of ATPG in combination with other tools/techniques to investigate failures in detail; is crucial in the fast root cause determination and, in case of a test coverage, aid in having effective test screen method implemented.


2016 ◽  
Vol 23 (3) ◽  
pp. 97-105
Author(s):  
Deyu He ◽  
Niaoqing Hu ◽  
Lei Hu ◽  
Ling Chen ◽  
YiPing Guo ◽  
...  

Abstract Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME) systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR) and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF) risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.


Author(s):  
Peter Marwedel

AbstractUnfortunately, we cannot rely on designed and possibly already manufactured systems to operate as expected. These systems may have become defective during their use, or their function may have been compromised during the fabrication or their design. The purpose of testing is to verify whether or not an existing embedded/cyber-physical system can be operated as expected. In this chapter, we will present fundamental terms and techniques for testing. There will be a brief introduction to the aims of test pattern generation and their application. We will be introducing terms such as fault model, fault coverage, fault simulation, and fault injection. Also, we will be presenting techniques which improve testability, including the generation of pseudo-random patterns, and signature analysis. It would be beneficial to consider testability issues already during design. In case of fault-tolerant systems, resilience must be verified.


Author(s):  
Jorge Tonfat ◽  
Jimmy Tarrillo ◽  
Lucas Tambara ◽  
Fernanda Lima Kastensmidt ◽  
Ricardo Reis

Sign in / Sign up

Export Citation Format

Share Document