fault coverage
Recently Published Documents


TOTAL DOCUMENTS

515
(FIVE YEARS 44)

H-INDEX

31
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2505
Author(s):  
Mariusz Węgrzyn ◽  
Ernest Jamro ◽  
Agnieszka Dąbrowska-Boruch ◽  
Kazimierz Wiatr

Testing FPGA-based soft processor cores requires a completely different methodology in comparison to standard processors. The stuck-at fault model is insufficient, as the logic is implemented by lookup tables (LUTs) in FPGA, and this SRAM-based LUT memory is vulnerable to single-event upset (SEU) mainly caused by cosmic radiations. Consequently, in this paper, we used combined SEU-induced and stuck-at fault models to simulate every possible fault. The test program written in an assembler was based on the bijective property. Furthermore, the fault detection matrix was determined, and this matrix describes the detectability of every fault by every test vector. The major novelty of this paper is the optimal reduction in the number of required test vectors in such a way that fault coverage is not reduced. Furthermore, this paper also studied the optimal selection of test vectors when only 95% maximal fault coverage is acceptable; in such a case, only three test vectors are required. Further, local and global test vector selection is also described.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lin Wei-Wei ◽  
Zeng Hong-Wei ◽  
Jung Yoon Kim

Ensuring the consistency of protocol implementation and protocol specification is the basic premise of wireless communication. With the application of wireless communication in more and more fields, the wireless communication environment becomes more and more complex, and the fault coverage of wireless protocol conformance testing is also facing more and more challenges. To solve this problem, this paper uses Finite State Machine (FSM) as a formal description tool for wireless protocols and presents a combining test method based on two test methods with complementary characteristics in the test technologies based on structural coverage and state identification. Then, the paper evaluates the effectiveness of the method based on 14 empirical cases. The experimental results show that the fault coverage of each empirical case can be effectively improved to 100% when the average test cost is only increased by 17.99%.


Author(s):  
Sharath Kumar Y. N. ◽  
Dinesha P.

Designing VLSI digital circuits is challenging tasks because of testing the circuits concerning design time. The reliability and productivity of digital integrated circuits are primarily affected by the defects in the manufacturing process or systems. If the defects are more in the systems, which leads the fault in the systems. The fault tolerant systems are necessary to overcome the faults in the VLSI digital circuits. In this research article, an asynchronous circuits based an effective transient fault injection (TFI) and fault tolerant system (FTS) are modelled. The TFI system generates the faults based on BMA based LFSR with faulty logic insertion and one hot encoded register. The BMA based LFSR reduces the hardware complexity with less power consumption on-chip than standard LFSR method. The FTS uses triple mode redundancy (TMR) based majority voter logic (MVL) to tolerant the faults for asynchronous circuits. The benchmarked 74X-series circuits are considered as an asynchronous circuit for TMR logic. The TFI-FTS module is modeled using Verilog-HDL on Xilinx-ISE and synthesized on hardware platform. The Performance parameters are tabulated for TFI-FTS based asynchronous circuits. The performance of TFI-FTS Module is analyzed with 100% fault coverage. The fault coverage is validated using functional simulation of each asynchronous circuit with fault injection in TFI-FTS Module.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2009
Author(s):  
Sorin Liviu Jurj ◽  
Raul Rotar ◽  
Flavius Opritoiu ◽  
Mircea Vladutiu

This paper presents an improved mathematical model for calculating the solar test factor (STF) and solar reliability factor (SRF) of a photovoltaic (PV) automated equipment. By employing a unified metrics system and a combined testing suite encompassing various energy-efficient testing techniques, the aim of this paper is to determine a general fault coverage and improve the global SRF of a closed-loop dual-axis solar tracking system. Accelerated testing coupled with reliability analysis are essential tools for assessing the performance of modern solar tracking devices since PV system malfunctioning is directly connected to economic loss, which is an important aspect for the solar energy domain. The experimental results show that the unified metrics system is potentially suitable for assessing the reliability evaluation of many types of solar tracking systems. Additionally, the proposed combined testing platform proves efficient regarding fault coverage (overall coverage of 66.35% for all test scenarios), test time (an average of 275 min for 2864 test cycles), and power consumption (zero costs regarding electricity consumption for all considered test cases) points of view.


Informatics ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 25-42
Author(s):  
V. N. Yarmolik ◽  
V. A. Levantsevich ◽  
D. V. Demenkovets ◽  
I. Mrozek

The urgency of the problem of testing storage devices of modern computer systems is shown. The mathematical models of their faults and the methods used for testing the most complex cases by classical march tests are investigated. Passive pattern sensitive faults (PNPSFk) are allocated, in which arbitrary k from N memory cells participate, where k << N, and N is the memory capacity in bits. For these faults, analytical expressions are given for the minimum and maximum fault coverage that is achievable within the march tests. The concept of a primitive is defined, which describes in terms of march test elements the conditions for activation and fault detection of PNPSFk of storage devices. Examples of march tests with maximum fault coverage, as well as march tests with a minimum time complexity equal to 18N are given. The efficiency of a single application of tests such as MATS ++, March C− and March PS is investigated for different number of k ≤ 9 memory cells involved in PNPSFk fault. The applicability of multiple testing with variable address sequences is substantiated, when the use of random sequences of addresses is proposed. Analytical expressions are given for the fault coverage of complex PNPSFk faults depending on the multiplicity of the test. In addition, the estimates of the mean value of the multiplicity of the MATS++, March C− and March PS tests, obtained on the basis of a mathematical model describing the problem of the coupon collector, and ensuring the detection of all k2k PNPSFk faults are given. The validity of analytical estimates is experimentally shown and the high efficiency of PNPSFk fault detection is confirmed by tests of the March PS type.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1074
Author(s):  
Raul Rotar ◽  
Sorin Liviu Jurj ◽  
Flavius Opritoiu ◽  
Mircea Vladutiu

This paper presents a mathematical approach for determining the reliability of solar tracking systems based on three fault coverage-aware metrics which use system error data from hardware, software as well as in-circuit testing (ICT) techniques, to calculate a solar test factor (STF). Using Euler’s named constant, the solar reliability factor (SRF) is computed to define the robustness and availability of modern, high-performance solar tracking systems. The experimental cases which were run in the Mathcad software suite and the Python programming environment show that the fault coverage-aware metrics greatly change the test and reliability factor curve of solar tracking systems, achieving significantly reduced calculation steps and computation time.


Sign in / Sign up

Export Citation Format

Share Document