Formal Model-Driven Engineering of Distributed Simulation Systems based on Architecture-Centric Domain-Specific Approach

Author(s):  
Di Wu ◽  
Jie Chen ◽  
Flavio Oquendo
Author(s):  
Martin Monperrus ◽  
Jean-Marc Jézéquel ◽  
Joël Champeau ◽  
Brigitte Hoeltzener

Model-Driven Engineering (MDE) is an approach to software development that uses models as primary artifacts, from which code, documentation and tests are derived. One way of assessing quality assurance in a given domain is to define domain metrics. We show that some of these metrics are supported by models. As text documents, models can be considered from a syntactic point of view i.e., thought of as graphs. We can readily apply graph-based metrics to them, such as the number of nodes, the number of edges or the fan-in/fan-out distributions. However, these metrics cannot leverage the semantic structuring enforced by each specific metamodel to give domain specific information. Contrary to graph-based metrics, more specific metrics do exist for given domains (such as LOC for programs), but they lack genericity. Our contribution is to propose one metric, called s, that is generic over metamodels and allows the easy specification of an open-ended wide range of model metrics.


Author(s):  
Edward Nu�ez-Valdez ◽  
Oscar Sanjuan-Martinez ◽  
Cristina Pelayo G-Bustelo ◽  
Juan Manuel Cueva-Lovelle ◽  
Guillermo Infante-Hernandez

2020 ◽  
Vol 70 (1) ◽  
pp. 54-59
Author(s):  
Zhi Zhu ◽  
Yonglin Lei ◽  
Yifan Zhu

Model-driven engineering has become popular in the combat effectiveness simulation systems engineering during these last years. It allows to systematically develop a simulation model in a composable way. However, implementing a conceptual model is really a complex and costly job if this is not guided under a well-established framework. Hence this study attempts to explore methodologies for engineering the development of simulation models. For this purpose, we define an ontological metamodelling framework. This framework starts with ontology-aware system conceptual descriptions, and then refines and transforms them toward system models until they reach final executable implementations. As a proof of concept, we identify a set of ontology-aware modelling frameworks in combat systems specification, then an underwater targets search scenario is presented as a motivating example for running simulations and results can be used as a reference for decision-making behaviors.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Simona Bernardi ◽  
José Merseguer ◽  
Dorina C. Petriu

Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results.


2013 ◽  
Vol 14 (1) ◽  
pp. 429-459 ◽  
Author(s):  
Juan de Lara ◽  
Esther Guerra ◽  
Jesús Sánchez Cuadrado

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 141872-141894
Author(s):  
Cristian Gonzalez Garcia ◽  
Daniel Meana-Llorian ◽  
Vicente Garcia-Diaz ◽  
Andres Camilo Jimenez ◽  
John Petearson Anzola

Sign in / Sign up

Export Citation Format

Share Document