Active fault-tolerant control strategy for lateral motion of civil aircraft

Author(s):  
Kangle Wang ◽  
Shaoping Wang ◽  
Xingjian Wang ◽  
Zhongwei Yang
Author(s):  
Etienne Dijoux ◽  
Michel Benne ◽  
Nadia Yousfi Steiner ◽  
Brigitte Grondin Perez ◽  
Marie-Cecile Pera

2011 ◽  
Vol 59 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Ł. Dziekan ◽  
M. Witczak ◽  
J. Korbicz

Active fault-tolerant control design for Takagi-Sugeno fuzzy systemsIn this paper, a virtual actuator-based active fault-tolerant control strategy is presented. After a short introduction to Takagi-Sugeno fuzzy systems, it is shown how to design a fault-tolerant control strategy for this particular class of non-linear systems. The key contribution of the proposed approach is an integrated fault-tolerant control design procedure of fault identification and control within an integrated fault-tolerant control scheme. In particular, fault identification is implemented with the suitable state observer. While, the controller is implemented in such a way that the state of the (possibly faulty) system tracks the state of a fault-free reference model. Consequently, the fault-tolerant control stabilizes the possibly faulty system taking into account the input constraints and some control objective function. Finally, the last part of the paper shows a comprehensive case study regarding the application of the proposed strategy to fault-tolerant control of a twin-rotor system.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1695 ◽  
Author(s):  
Qinyue Zhu ◽  
Zhaoyang Li ◽  
Xitang Tan ◽  
Dabo Xie ◽  
Wei Dai

Due to the use of multiple observers and controllers in multi-sensor fault-tolerant control of PMSM drive systems, the algorithm is complex and the system control performance is affected. In view of this, the paper studies multi-sensor fault diagnosis and active fault-tolerant control strategies based on a composite sliding mode observer. With the mathematical model of PMSM built, a design method of the composite sliding mode observer is proposed. A single observer is used to observe and estimate various state variables in the system in real time, which simplifies the implementation of observer-related algorithms. In order to improve the diagnostic accuracy of different types of sensors under different faults, a method for determining fault thresholds is proposed through global search for the maximum residual value. Based on this, a fault diagnosis and active fault-tolerant control strategy is proposed to realize fast switching and reconstruction of feedback signals of closed-loop control systems under different faults of multiple sensors, thus restoring the system performance. Finally, the effectiveness of the proposed algorithm and control strategy is verified by simulation experiments


Sign in / Sign up

Export Citation Format

Share Document