A frequency domain algorithm to identify recurrent sedentary behaviors from activity time-series data

Author(s):  
Qian He ◽  
Emmanuel O. Agu
2020 ◽  
Author(s):  
Ashley M Patton ◽  
Gabriel C Rau ◽  
Corinna Abesser ◽  
David R James ◽  
Peter J Cleall ◽  
...  

<p>Urban environments often have highly variable and evolving hydrogeology. Coastal cities present even greater challenges to hydraulic and thermal conceptualisation and parameter estimation due to their complex dynamics and the heterogeneity of ocean-influenced hydraulic processes. Traditional methods of investigation (e.g. pump tests, invasive sampling) are time consuming, expensive, represent a snapshot in time and are difficult to conduct in built-up areas, yet properties derived from them are crucial for constructing models and forecasting urban groundwater evolution.</p><p>Here we present a novel approach to use passive sampling of groundwater head data to understand subsurface processes and derive hydraulic and geotechnical properties in an urban-coastal setting. This is illustrated using twenty years of high frequency (hourly) time-series data from an existing groundwater monitoring network comprising 234 boreholes distributed across Cardiff, the capital city of Wales, UK. We have applied Tidal Subsurface Analysis (TSA) to Earth, Atmospheric and Oceanic signals in groundwater time-series in the frequency domain, and also generated Barometric Response Functions in the time domain. By also observing the damping and attenuation of the response to ocean tides with distance from the coast and tidal rivers, this combination of analyses has enabled us to disentangle the influence of the different tidal components and estimate spatially distributed aquifer processes and parameters.</p><p>The data cover a period pre and post construction of a barrage across the coastline, impounding the city’s rivers. We were therefore able to observe a huge decrease in the subsurface ocean tide signal propagation following this human intervention, through the coastal and tidal river boundaries. These changes reveal variations in hydraulic responses and values of hydraulic diffusivity between different lithologies, notably with made-ground deposits being much less sensitive to ocean tides than the underlying sand and gravel aquifer. By being able to map the spatial variations in hydraulic response and barometric efficiency for the first time (and therefore formation compressibility and extent of aquifer confinement) we have been able to refine interpretations (and in some cases overcome misconceptions) derived from previous inferences made solely from borehole logs. We anticipate that linking the improved hydraulic characterisation, enabled by the new methodology, will also help better characterisation of the subsurface thermal regime, and management of shallow geothermal energy resources in coastal urban aquifers.</p>


Geophysics ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. E21-E35
Author(s):  
Shinya Sato ◽  
Tada-Nori Goto ◽  
Takafumi Kasaya ◽  
Hiroshi Ichihara

The magnetotelluric (MT) method has been used for visualizing subsurface resistivity structures and more recently for monitoring resistivity changes. However, electromagnetic data often include cultural noise, which can cause errors in the estimation of MT response functions and subsurface resistivity structure analysis. Frequency-domain independent component analysis (FDICA) offers advantages for MT data processing particularly because this method can extract hidden components in the observed data. These components can be decomposed into natural MT signals and cultural noise so that the noise effect in the recovered MT data is reduced. FDICA is applied to MT data acquired at the Kakioka Magnetic Observatory in Japan. The apparent resistivity and phase curves are obtained with small estimated errors between periods of 7 and 12,000 s, although the length of the time-series data is limited. The curves are smoother than those obtained using a conventional method. Various types of synthetic noise are added to the time series at Kakioka to test the noise-reduction performance of FDICA for MT data with high noise contamination. The results demonstrate that FDICA can be used to estimate MT response functions with high accuracy even under conditions in which more than half of the time-series data are contaminated by noise.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianmin Zhou ◽  
Sen Gao ◽  
Jiahui Li ◽  
Wenhao Xiong

To extract the time-series characteristics of the original bearing signals and predict the remaining useful life (RUL) more effectively, a parallel multichannel recurrent convolutional neural network (PMCRCNN) is proposed for the prediction of RUL. Firstly, the time domain, frequency domain, and time-frequency domain features are extracted from the original signal. Then, the PMCRCNN model is constructed. The front of the model is the parallel multichannel convolution unit to learn and integrate the global and local features from the time-series data. The back of the model is the recurrent convolution layer to model the temporal dependence relationship under different degradation features. Normalized life values are used as labels to train the prediction model. Finally, the RUL was predicted by the trained neural network. The proposed method is verified by full life tests of bearing. The comparison with the existing prognostics approaches of convolutional neural network (CNN) and the recurrent convolutional neural network (RCNN) models proves that the proposed method (PMCRCNN) is effective and superior in improving the accuracy of RUL prediction.


Author(s):  
Luca Faes ◽  
Silvia Erla ◽  
Alberto Porta ◽  
Giandomenico Nollo

We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the known directed coherence (DC) and partial DC measures. The new measures are illustrated in theoretical examples showing that they reduce to the known measures in the absence of instantaneous causality, and describe peculiar aspects of directional interaction among multiple series when instantaneous causality is non-negligible. Then, the issue of estimating eMVAR models from time-series data is faced, proposing two approaches for model identification and discussing problems related to the underlying model assumptions. Finally, applications of the framework on cardiovascular variability series and multichannel EEG recordings are presented, showing how it allows one to highlight patterns of frequency domain causality consistent with well-interpretable physiological interaction mechanisms.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Sign in / Sign up

Export Citation Format

Share Document