Knowledge Graph Integrated Graph Neural Networks for Chinese Medical Text Classification

Author(s):  
Ge Lan ◽  
Ye Li ◽  
Mengting Hu ◽  
Yufei Sun ◽  
Yuzhi Zhang
2021 ◽  
Author(s):  
Yonghao Liu ◽  
Renchu Guan ◽  
Fausto Giunchiglia ◽  
Yanchun Liang ◽  
Xiaoyue Feng

2020 ◽  
Vol 34 (01) ◽  
pp. 222-229
Author(s):  
Zequn Sun ◽  
Chengming Wang ◽  
Wei Hu ◽  
Muhao Chen ◽  
Jian Dai ◽  
...  

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.


2020 ◽  
Vol 34 (05) ◽  
pp. 8544-8551 ◽  
Author(s):  
Giannis Nikolentzos ◽  
Antoine Tixier ◽  
Michalis Vazirgiannis

Graph neural networks have recently emerged as a very effective framework for processing graph-structured data. These models have achieved state-of-the-art performance in many tasks. Most graph neural networks can be described in terms of message passing, vertex update, and readout functions. In this paper, we represent documents as word co-occurrence networks and propose an application of the message passing framework to NLP, the Message Passing Attention network for Document understanding (MPAD). We also propose several hierarchical variants of MPAD. Experiments conducted on 10 standard text classification datasets show that our architectures are competitive with the state-of-the-art. Ablation studies reveal further insights about the impact of the different components on performance. Code is publicly available at: https://github.com/giannisnik/mpad.


Author(s):  
Xiaobin Tang ◽  
Jing Zhang ◽  
Bo Chen ◽  
Yang Yang ◽  
Hong Chen ◽  
...  

Knowledge graph alignment aims to link equivalent entities across different knowledge graphs. To utilize both the graph structures and the side information such as name, description and attributes, most of the works propagate the side information especially names through linked entities by graph neural networks. However, due to the heterogeneity of different knowledge graphs, the alignment accuracy will be suffered from aggregating different neighbors. This work presents an interaction model to only leverage the side information. Instead of aggregating neighbors, we compute the interactions between neighbors which can capture fine-grained matches of neighbors. Similarly, the interactions of attributes are also modeled. Experimental results show that our model significantly outperforms the best state-of-the-art methods by 1.9-9.7% in terms of HitRatio@1 on the dataset DBP15K.


Sign in / Sign up

Export Citation Format

Share Document