Dialogue Act Classification Model Based on Deep Neural Networks for a Natural Language Interface to Databases in Korean

Author(s):  
Minkyoung Kim ◽  
Harksoo Kim
2021 ◽  
Vol 11 (7) ◽  
pp. 3184
Author(s):  
Ismael Garrido-Muñoz  ◽  
Arturo Montejo-Ráez  ◽  
Fernando Martínez-Santiago  ◽  
L. Alfonso Ureña-López 

Deep neural networks are hegemonic approaches to many machine learning areas, including natural language processing (NLP). Thanks to the availability of large corpora collections and the capability of deep architectures to shape internal language mechanisms in self-supervised learning processes (also known as “pre-training”), versatile and performing models are released continuously for every new network design. These networks, somehow, learn a probability distribution of words and relations across the training collection used, inheriting the potential flaws, inconsistencies and biases contained in such a collection. As pre-trained models have been found to be very useful approaches to transfer learning, dealing with bias has become a relevant issue in this new scenario. We introduce bias in a formal way and explore how it has been treated in several networks, in terms of detection and correction. In addition, available resources are identified and a strategy to deal with bias in deep NLP is proposed.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1287
Author(s):  
Yong-Hoon Kim ◽  
Yourim Yoon ◽  
Yong-Hyuk Kim

Epistasis, which indicates the difficulty of a problem, can be used to evaluate the basis of the space in which the problem lies. However, calculating epistasis may be challenging as it requires all solutions to be searched. In this study, a method for constructing a surrogate model, based on deep neural networks, that estimates epistasis is proposed for basis evaluation. The proposed method is applied to the Variant-OneMax problem and the NK-landscape problem. The method is able to make successful estimations on a similar level to basis evaluation based on actual epistasis, while significantly reducing the computation time. In addition, when compared to the epistasis-based basis evaluation, the proposed method is found to be more efficient.


Sign in / Sign up

Export Citation Format

Share Document