Robustness Evaluation of Hand Vein Recognition Systems

Author(s):  
Christof Kauba ◽  
Andreas Uhl
2013 ◽  
Vol 462-463 ◽  
pp. 312-315
Author(s):  
Cai Xia Liu

Biometrics technology is an important security technology and the research of it has become a new hot spot for its superior security features. Then hand vein recognition is a new biological feature recognition which has many advantages, such as safety, non-contact. According to the features of human hand vein image, a hand vein preprocessing method based on wavelet transform and windows maximum between-class difference method threshold (OTSU) segmentation algorithm is proposed. In this paper, the hand vein image is enhanced by adaptive histogram equalization in low frequency part of the hand vein image after wavelet decomposition and filtering before feature extraction. Then the windows OTSU threshold segmentation algorithm is used to get the features. The experimental results show that this method is simple and easy to realize and has laid a good foundation for the latter part of the vein recognition.


2014 ◽  
Vol 43 (1) ◽  
pp. 110004
Author(s):  
胡云朋 HU Yun-peng ◽  
王志勇 WANG Zhi-yong ◽  
李飞 LI Fei ◽  
杨晓苹 YANG Xiao-ping ◽  
薛玉明 XUE Yu-ming

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3718 ◽  
Author(s):  
Yiding Wang ◽  
Heng Cao ◽  
Xiaochen Jiang ◽  
Yuanyan Tang

The dorsal hand vein images captured by cross-device may have great differences in brightness, displacement, rotation angle and size. These deviations must influence greatly the results of dorsal hand vein recognition. To solve these problems, the method of dorsal hand vein recognition was put forward based on bit plane and block mutual information in this paper. Firstly, the input gray image of dorsal hand vein was converted to eight-bit planes to overcome the interference of brightness inside the higher bit planes and the interference of noise inside the lower bit planes. Secondly, the texture of each bit plane of dorsal hand vein was described by a block method and the mutual information between blocks was calculated as texture features by three kinds of modes to solve the problem of rotation and size. Finally, the experiments cross-device were carried out. One device was used to be registered, the other was used to recognize. Compared with the SIFT (Scale-invariant feature transform, SIFT) algorithm, the new algorithm can increase the recognition rate of dorsal hand vein from 86.60% to 93.33%.


Author(s):  
Norah Abdullah Al-johani ◽  
Lamiaa A. Elrefaei

Advancements in biometrics have attained relatively high recognition rates. However, the need for a biometric system that is reliable, robust, and convenient remains. Systems that use palmprints (PP) for verification have a number of benefits including stable line features, reduced distortion and simple self-positioning. Dorsal hand veins (DHVs) are distinctive for every person, such that even identical twins have different DHVs. DHVs appear to maintain stability over time. In the past, different features algorithms were used to implement palmprint (PP) and dorsal hand vein (DHV) systems. Previous systems relied on handcrafted algorithms. The advancements of deep learning (DL) in the features learned by the convolutional neural network (CNN) has led to its application in PP and DHV recognition systems. In this article, a multimodal biometric system based on PP and DHV using (VGG16, VGG19 and AlexNet) CNN models is proposed. The proposed system is uses two approaches: feature level fusion (FLF) and Score level fusion (SLF). In the first approach, the features from PP and DHV are extracted with CNN models. These extracted features are then fused using serial or parallel fusion and used to train error-correcting output codes (ECOC) with a support vector machine (SVM) for classification. In the second approach, the fusion at score level is done with sum, max, and product methods by applying two strategies: Transfer learning that uses CNN models for features extraction and classification for PP and DHV, then score level fusion. For the second strategy, features are extracted with CNN models for PP and DHV and used to train ECOC with SVM for classification, then score level fusion. The system was tested using two DHV databases and one PP database. The multimodal system is tested two times by repeating PP database for each DHV database. The system achieved very high accuracy rate.


Sign in / Sign up

Export Citation Format

Share Document