Classification of hand movements related to grasp by using EMG signals

Author(s):  
Selahaddin Batuhan Akben
Keyword(s):  
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 137
Author(s):  
Larisa Dunai ◽  
Martin Novak ◽  
Carmen García Espert

The present paper describes the development of a prosthetic hand based on human hand anatomy. The hand phalanges are printed with 3D printing with Polylactic Acid material. One of the main contributions is the investigation on the prosthetic hand joins; the proposed design enables one to create personalized joins that provide the prosthetic hand a high level of movement by increasing the degrees of freedom of the fingers. Moreover, the driven wire tendons show a progressive grasping movement, being the friction of the tendons with the phalanges very low. Another important point is the use of force sensitive resistors (FSR) for simulating the hand touch pressure. These are used for the grasping stop simulating touch pressure of the fingers. Surface Electromyogram (EMG) sensors allow the user to control the prosthetic hand-grasping start. Their use may provide the prosthetic hand the possibility of the classification of the hand movements. The practical results included in the paper prove the importance of the soft joins for the object manipulation and to get adapted to the object surface. Finally, the force sensitive sensors allow the prosthesis to actuate more naturally by adding conditions and classifications to the Electromyogram sensor.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Dmitry Amelin ◽  
Ivan Potapov ◽  
Josep Cardona Audí ◽  
Andreas Kogut ◽  
Rüdiger Rupp ◽  
...  

AbstractThis paper reports on the evaluation of recurrent and convolutional neural networks as real-time grasp phase classifiers for future control of neuroprostheses for people with high spinal cord injury. A field-programmable gate array has been chosen as an implementation platform due to its form factor and ability to perform parallel computations, which are specific for the selected neural networks. Three different phases of two grasp patterns and the additional open hand pattern were predicted by means of surface Electromyography (EMG) signals (i.e. Seven classes in total). Across seven healthy subjects, CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks) had a mean accuracy of 85.23% with a standard deviation of 4.77% and 112 µs per prediction and 83.30% with a standard deviation of 4.36% and 40 µs per prediction, respectively.


Author(s):  
Muhammad Zia ur Rehman ◽  
Syed Omer Gilani ◽  
Asim Waris ◽  
Imran Khan Niazi ◽  
Ernest Nlandu Kamavuako

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Ana Matran-Fernandez ◽  
Itzel Jared Rodríguez Martínez ◽  
Riccardo Poli ◽  
Christian Cipriani ◽  
Luca Citi

Abstract We present the SurfacE Electromyographic with hanD kinematicS (SEEDS) database. It contains electromyographic (EMG) signals and hand kinematics recorded from the forearm muscles of 25 non-disabled subjects while performing 13 different movements at normal and slow-paced speeds. EMG signals were recorded with a high-density 126-channel array centered on the extrinsic flexors of the fingers and 8 further electrodes placed on the extrinsic extensor muscles. A data-glove was used to record 18 angles from the joints of the wrist and fingers. The correct synchronisation of the data-glove and the EMG was ascertained and the resulting data were further validated by implementing a simple classification of the movements. These data can be used to test experimental hypotheses regarding EMG and hand kinematics. Our database allows for the extraction of the neural drive as well as performing electrode selection from the high-density EMG signals. Moreover, the hand kinematic signals allow the development of proportional methods of control of the hand in addition to the more traditional movement classification approaches.


Author(s):  
Dedy Hidayat Kusuma ◽  
Mohammad Nur Shodiq

  Technological developments to support the current learning system are so fast that there is an interactive innovation technology for educational trends. One of the technologies implemented is an interactive presentation application in a multimedia class or smart presentation system. This technology makes it possible to control the presentation in a natural way with their hand movements. This introduction can replace conventional mouse roles and functions to facilitate teacher performance in applying interactive technology in the classroom. To build this intelligent presentation system, it is divided into several parts: 1) Recognition sensor arm movement using Myo armband; 2) Hand gesture of hand movements made several steps include: a) data retrieval based on realtime and wireless; b) feature extraction; c) classification using artificial neural network; and 3) Smart presentation, is a presentation system that can understand human behavior and provide interactive presentations.The expected benefits of the results of this study are, with the construction of intelligent presentation systems using hand-gesturing recognition based on the classification of electromyography signals, 1) Make presentations more efficient, engaging and easier to understand, and also make the discussion more interactive and improve communication; 2) Assists the presenter of material in exposing the material by using a presentation control system based on hand gestures.


Sign in / Sign up

Export Citation Format

Share Document