electromyography signals
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 100)

H-INDEX

15
(FIVE YEARS 6)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Kuang-Hao Lin ◽  
Bo-Xun Peng

This study developed a virtual reality interactive game with smart wireless wearable technology for healthcare of elderly users. The proposed wearable system uses its intelligent and wireless features to collect electromyography signals and upload them to a cloud database for further analysis. The electromyography signals are then analyzed for the users’ muscle fatigue, health, strength, and other physiological conditions. The average slope maximum So and Chan (ASM S & C) algorithm is integrated in the proposed system to effectively detect the quantity of electromyography peaks, and the accuracy is as high as 95%. The proposed system can promote the health conditions of elderly users, and motivate them to acquire new knowledge of science and technology.


2021 ◽  
Author(s):  
Pezhman Abdolahnezhad ◽  
Aghil Yousefi-Koma ◽  
Mohammad Reza Zakerzadeh ◽  
Saeed Rezaeian ◽  
Mehrta Farsad ◽  
...  

Author(s):  
Marco Vinicio Alban ◽  
Haechang Lee ◽  
Hanul Moon ◽  
Seunghyup Yoo

Abstract Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require preparation steps, and are uncomfortable to wear. While dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications; the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed micro-pyramidal array electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.


Sign in / Sign up

Export Citation Format

Share Document