Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals

2020 ◽  
Vol 110 ◽  
pp. 1023-1036 ◽  
Author(s):  
Feiyun Xiao ◽  
Decai Yang ◽  
Zhongming Lv ◽  
Xiaohui Guo ◽  
Zhengshi Liu ◽  
...  
Author(s):  
Z. Neili ◽  
M. Fezari ◽  
A. Redjati

The acquisition of Breath sounds (BS) signals from a human respiratory system with an electronic stethoscope, provide and offer prominent information which helps the doctors to diagnosis and classification of pulmonary diseases. Unfortunately, this BS signals with other biological signals have a non-stationary nature according to the variation of the lung volume, and this nature makes it difficult to analyze and classify between several diseases. In this study, we were focused on comparing the ability of the extreme learning machine (ELM) and k-nearest neighbour (K-nn) machine learning algorithms in the classification of adventitious and normal breath sounds. To do so, the empirical mode decomposition (EMD) was used in this work to analyze BS, this method is rarely used in the breath sounds analysis. After the EMD decomposition of the signals into Intrinsic Mode Functions (IMFs), the Hjorth descriptors (Activity) and Permutation Entropy (PE) features were extracted from each IMFs and combined for classification stage. The study has found that the combination of features (activity and PE) yielded an accuracy of 90.71%, 95% using ELM and K-nn respectively in binary classification (normal and abnormal breath sounds), and 83.57%, 86.42% in multiclass classification (five classes).


2019 ◽  
Vol 24 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Xiaoxia Zheng ◽  
Guowang Zhou ◽  
Dongdong Li ◽  
Haohan Ren

Rolling bearings are the key components of rotating machinery. However, the incipient fault characteristics of a rolling bearing vibration signal are weak and difficult to extract. To solve this problem, this paper presents a novel rolling bearing vibration signal fault feature extraction and fault pattern recognition method based on variational mode decomposition (VMD), permutation entropy (PE) and support vector machines (SVM). In the proposed method, the bearing vibration signal is decomposed by VMD, and the intrinsic mode functions (IMFs) are obtained in different scales. Then, the PE values of each IMF are calculated to uncover the multi-scale intrinsic characteristics of the vibration signal. Finally, PE values of IMFs are fed into SVM to automatically accomplish the bearing condition identifications. The proposed method is evaluated by rolling bearing vibration signals. The results indicate that the proposed method is superior and can diagnose rolling bearing faults accurately.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 400 ◽  
Author(s):  
Zhou ◽  
Guo ◽  
Wang ◽  
Du ◽  
Wang ◽  
...  

In recent years, a new method of fault diagnosis, named variational mode decomposition (VMD), has been widely used in industrial production, but the decomposition accuracy of VMD is determined by two parameters, which are respectively the decomposition layer number k and the penalty factor α, if the parameters are not properly selected, there will be over-decomposition or under-decomposition. In order to find an approach to determine the parameters adaptively, a method to optimize VMD by using the immune fruit fly optimization algorithm (IFOA) is proposed in this paper. In this method, permutation entropy is used as the fitness function, firstly, the immune fruit fly optimization algorithm is used to search the combined parameters of k and α in VMD, searching for the best combination parameters of k and α by iteration, and then uses the combined parameters to perform VMD, finally, the center frequency is determined through frequency spectrum analysis. The method mentioned is applied to the fault extraction of a simulated signal and a measured signal of a wind turbine gearbox, and the fault frequency is successfully extracted. Using ensemble empirical mode decomposition (EEMD) and singular spectrum decomposition (SSD) to compare with the proposed method, which validated feasibility of the proposed method.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 96 ◽  
Author(s):  
Xiaoming Xue ◽  
Chaoshun Li ◽  
Suqun Cao ◽  
Jinchao Sun ◽  
Liyan Liu

This study presents a two-step fault diagnosis scheme combined with statistical classification and random forests-based classification for rolling element bearings. Considering the inequality of features sensitivity in different diagnosis steps, the proposed method utilizes permutation entropy and variational mode decomposition to depict vibration signals under single scale and multiscale. In the first step, the permutation entropy features on the single scale of original signals are extracted and the statistical classification model based on Chebyshev’s inequality is constructed to detect the faults with a preliminary acquaintance of the bearing condition. In the second step, vibration signals with fault conditions are firstly decomposed into a collection of intrinsic mode functions by using variational mode decomposition and then multiscale permutation entropy features derived from each mono-component are extracted to identify the specific fault types. In order to improve the classification ability of the characteristic data, the out-of-bag estimation of random forests is firstly employed to reelect and refine the original multiscale permutation entropy features. Then the refined features are considered as the input data to train the random forests-based classification model. Finally, the condition data of bearings with different fault conditions are employed to evaluate the performance of the proposed method. The results indicate that the proposed method can effectively identify the working conditions and fault types of rolling element bearings.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 765
Author(s):  
Pengfei Wang ◽  
Yanbin Gao ◽  
Menghao Wu ◽  
Fan Zhang ◽  
Guangchun Li ◽  
...  

Fiber optic gyroscope (FOG) is one of the important components of Inertial Navigation Systems (INS). In order to improve the accuracy of the INS, it is necessary to suppress the random error of the FOG signal. In this paper, a variational mode decomposition (VMD) denoising method based on beetle swarm antenna search (BSAS) algorithm is proposed to reduce the noise in FOG signal. Firstly, the BSAS algorithm is introduced in detail. Then, the permutation entropy of the band-limited intrinsic mode functions (BLIMFs) is taken as the optimization index, and two key parameters of VMD algorithm, including decomposition mode number K and quadratic penalty factor α , are optimized by using the BSAS algorithm. Next, a new method based on Hausdorff distance (HD) between the probability density function (PDF) of all BLIMFs and that of the original signal is proposed in this paper to determine the relevant modes. Finally, the selected BLIMF components are reconstructed to get the denoised signal. In addition, the simulation results show that the proposed scheme is better than the existing schemes in terms of noise reduction performance. Two experiments further demonstrate the priority of the proposed scheme in the FOG noise reduction compared with other schemes.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2005 ◽  
Author(s):  
Jiaying Deng ◽  
Wenhai Zhang ◽  
Xiaomei Yang

To avoid power supply hazards caused by cable failures, this paper presents an approach of incipient cable failure recognition and classification based on variational mode decomposition (VMD) and a convolutional neural network (CNN). By using VMD, the original current signal is decomposed into seven modes with different center frequencies. Then, 42 features are extracted for the seven modes and used to construct a feature vector as input of the CNN to classify incipient cable failure through deep learning. Compared with using the original signals directly as the CNN input, the proposed approach is more efficient and robust. Experiments on different classifiers, namely, the decision tree (DT), K-nearest neighbor (KNN), BP neural network (BP) and support vector machine (SVM), and show that the CNN outperforms the other classifiers in terms of accuracy.


Sign in / Sign up

Export Citation Format

Share Document