Loop closure detection based on generative adversarial networks for simultaneous localization and mapping systems

Author(s):  
Kai Zhang ◽  
Wei Zhang
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1906
Author(s):  
Dongxiao Han ◽  
Yuwen Li ◽  
Tao Song ◽  
Zhenyang Liu

Aiming at addressing the issues related to the tuning of loop closure detection parameters for indoor 2D graph-based simultaneous localization and mapping (SLAM), this article proposes a multi-objective optimization method for these parameters. The proposed method unifies the Karto SLAM algorithm, an efficient evaluation approach for map quality with three quantitative metrics, and a multi-objective optimization algorithm. More particularly, the evaluation metrics, i.e., the proportion of occupied grids, the number of corners and the amount of enclosed areas, can reflect the errors such as overlaps, blurring and misalignment when mapping nested loops, even in the absence of ground truth. The proposed method has been implemented and validated by testing on four datasets and two real-world environments. For all these tests, the map quality can be improved using the proposed method. Only loop closure detection parameters have been considered in this article, but the proposed evaluation metrics and optimization method have potential applications in the automatic tuning of other SLAM parameters to improve the map quality.


2021 ◽  
Author(s):  
Κωνσταντίνος Τσιντώτας

Τα αυτόνομα ρομποτικά συστήματα αποτελούν ένα από τα τμήματα που βρίσκονται στην αιχμή της τεχνολογίας και της έρευνας. Τα σύγχρονα ρομποτικά συστήματα που δημιουργούνται δύναται να έχουν την ικανότητα να μπορούν να προσδιορίσουν την θέση τους μέσα στο περιβάλλον το οποίο περιπλανιούνται. Η επίτευξη του συγκεκριμένου στόχου επιτυγχάνεται μέσω της κατασκευής ενός χάρτη την στιγμή που πλοηγείται, μέσω ενός μηχανισμού που είναι ευρέως γνωστός ως ταυτόχρονος προσδιορισμός θέσης και τοποθεσίας (Simultaneous Localization and Mapping –SLAM). Ο χάρτης δημιουργείται μέσω των μετρήσεων που δέχεται το σύστημα από τους επιμέρους αισθητήρες που είναι τοποθετημένοι επάνω στο ρομποτικό σύστημα. Η αύξηση της υπολογιστικής ισχύς τα τελευταία χρόνια και η ευρέως διαδεδομένη χρήση των καμερών οδήγησε στα αυτόνομα συστήματα να επιλέγεται ως κύρια πηγή απόκτησης δεδομένων η χρήση καμερών. Καθώς όμως το ρομπότ διασχίζει την τροχιά του μέσα σε ένα άγνωστο περιβάλλον είναι έντονος ο κίνδυνος δημιουργίας ενός χάρτη με εσφαλμένα στοιχεία στην σχεδιασμένη τροχιά, με κύρια αίτια που μπορεί να σχετίζονται στην κακή εκτίμηση μετρήσεων των αισθητήριων ή σε ενδεχόμενη δυσλειτουργία των ενσωματωμένων οργάνων του συστήματος. Το πρόβλημα που αναφέρθηκε αποτελεί κίνδυνο για την περάτωση της αποστολής του ρομποτικού συστήματος, το οποίο όμως μπορεί να διορθωθεί με επαναπροσδιορισμό της τροχιάς του εφόσον είναι εφικτή η αναγνώριση της περιοχής που διασχίζει μέσω των οπτικών αισθητηρίων που διαθέτει. Τα συστήματα τα οποία βασίζονται αποκλειστικά στις κάμερες ως μέσα αναγνώρισης περιοχής είναι γνωστά ως εμφάνισης βασιζόμενα συστήματα (appearance based systems) και οι τεχνικές που προσπαθούν να λύσουν το πρόβλημα είναι γνωστές ως ανίχνευση κλειστών βρόγχων (loop closure detection). Η παρούσα διδακτορική διατριβή εστιάζει στην δημιουργία ενός αντίστοιχου συστήματος ικανού να αναγνωρίσει μια επαναλαμβανόμενα επισκεπτόμενη περιοχή μέσω των εισερχόμενων εικόνων που δέχεται. Η επίτευξη του συστήματος στηρίζεται σε τρείς σημαντικές μονάδες. Στην αρχή έρχεται η μονάδα επεξεργασίας εικόνας (image processing) με την οποία είναι εφικτή η ερμηνεία των εισερχόμενων εικόνων. Μέσω τεχνικών περιγραφής εικόνας είναι δυνατή η λήψη σημείων ενδιαφέροντος ικανά να περιγράψουν την σκηνή που αντιμετωπίζει το ρομπότ. Κάθε εικόνα ενδέχεται να περιέχει εκατοντάδες τοπικά σημεία ενδιαφέροντος με αποτέλεσμα να μπορεί να περιγραφεί ως ένα σύνολο από επιμέρους χαρακτηριστικά. Ο χάρτης (map) αποτελεί την μονάδα που είναι υπεύθυνη για την αναπαράσταση του κόσμου που γνωρίζει το ρομπότ με βάση τα χαρακτηριστικά που έχουν ληφθεί από τις σκηνές που έχει επισκεφθεί. Τέλος, έρχεται η μονάδα πεποίθησης πιθανής περιοχής (belief generator), η οποία συνδυάζει τα εισερχόμενα δεδομένα με τα δεδομένα του χάρτη ώστε να είναι σε θέση να λάβει την απόφαση για το αν το σύστημα βρίσκεται ή όχι σε οικεία περιοχή με σκοπό να επαναπροσδιορίσει την τροχιά του.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Gangchen Hua ◽  
Xu Tan

In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM) using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM) to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3228 ◽  
Author(s):  
Yuwei Chen ◽  
Jian Tang ◽  
Changhui Jiang ◽  
Lingli Zhu ◽  
Matti Lehtomäki ◽  
...  

The growing interest and the market for indoor Location Based Service (LBS) have been drivers for a huge demand for building data and reconstructing and updating of indoor maps in recent years. The traditional static surveying and mapping methods can’t meet the requirements for accuracy, efficiency and productivity in a complicated indoor environment. Utilizing a Simultaneous Localization and Mapping (SLAM)-based mapping system with ranging and/or camera sensors providing point cloud data for the maps is an auspicious alternative to solve such challenges. There are various kinds of implementations with different sensors, for instance LiDAR, depth cameras, event cameras, etc. Due to the different budgets, the hardware investments and the accuracy requirements of indoor maps are diverse. However, limited studies on evaluation of these mapping systems are available to offer a guideline of appropriate hardware selection. In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved Maximum Likelihood Estimation (IMLE) algorithm developed by the Finnish Geospatial Research Institute (FGI). Firstly, an L shaped corridor (2nd floor of FGI) with approximately 80 m length was selected as the testing field for Matterport testing. Due to the lack of quantitative evaluation of Matterport indoor mapping performance, we attempted to characterize the pros and cons of the system by carrying out six field tests with different settings. The results showed that the mapping trajectory would influence the final mapping results and therefore, there was optimal Matterport configuration for better indoor mapping results. Secondly, a medium-size indoor environment (the FGI open library) was selected for evaluation of the mapping accuracy of these three indoor mapping technologies: SLAMMER, NAVIS and Matterport. Indoor referenced maps were collected with a small footprint Terrestrial Laser Scanner (TLS) and using spherical registration targets. The 2D indoor maps generated by these three mapping technologies were assessed by comparing them with the reference 2D map for accuracy evaluation; two feature selection methods were also utilized for the evaluation: interactive selection and minimum bounding rectangles (MBRs) selection. The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing. The results indicated that the accuracy of all the evaluated systems could generate indoor map at centimeter-level, but also variation of the density and quality of collected point clouds determined the applicability of a system into a specific LBS.


Author(s):  
Tanaka Kanji ◽  

Loop closure detection, which is the task of identifying locations revisited by a robot in a sequence of odometry and perceptual observations, is typically formulated as a combination of two subtasks: (1) bag-of-words image retrieval and (2) post-verification using random sample consensus (RANSAC) geometric verification. The main contribution of this study is the proposal of a novel post-verification framework that achieves good precision recall trade-off in loop closure detection. This study is motivated by the fact that not all loop closure hypotheses are equally plausible (e.g., owing to mutual consistency between loop closure constraints) and that if we have evidence that one hypothesis is more plausible than the others, then it should be verified more frequently. We demonstrate that the loop closure detection problem can be viewed as an instance of a multi-model hypothesize-and-verify framework. Thus, we can build guided sampling strategies on this framework where loop closures proposed using image retrieval are verified in a planned order (rather than in a conventional uniform order) to operate in a constant time. Experimental results using a stereo simultaneous localization and mapping (SLAM) system confirm that the proposed strategy, the use of loop closure constraints and robot trajectory hypotheses as a guide, achieves promising results despite the fact that there exists a significant number of false positive constraints and hypotheses.


2021 ◽  
Vol 13 (17) ◽  
pp. 3520
Author(s):  
Zhian Yuan ◽  
Ke Xu ◽  
Xiaoyu Zhou ◽  
Bin Deng ◽  
Yanxin Ma

Loop closure detection is an important component of visual simultaneous localization and mapping (SLAM). However, most existing loop closure detection methods are vulnerable to complex environments and use limited information from images. As higher-level image information and multi-information fusion can improve the robustness of place recognition, a semantic–visual–geometric information-based loop closure detection algorithm (SVG-Loop) is proposed in this paper. In detail, to reduce the interference of dynamic features, a semantic bag-of-words model was firstly constructed by connecting visual features with semantic labels. Secondly, in order to improve detection robustness in different scenes, a semantic landmark vector model was designed by encoding the geometric relationship of the semantic graph. Finally, semantic, visual, and geometric information was integrated by fuse calculation of the two modules. Compared with art-of-the-state methods, experiments on the TUM RBG-D dataset, KITTI odometry dataset, and practical environment show that SVG-Loop has advantages in complex environments with varying light, changeable weather, and dynamic interference.


Sign in / Sign up

Export Citation Format

Share Document