place recognition
Recently Published Documents


TOTAL DOCUMENTS

581
(FIVE YEARS 233)

H-INDEX

39
(FIVE YEARS 8)

Author(s):  
M. Usman Maqbool Bhutta ◽  
Yuxiang Sun ◽  
Darwin Lau ◽  
Ming Liu

Author(s):  
Bruno Arcanjo ◽  
Bruno Ferrarini ◽  
Michael J Milford ◽  
Klaus Mcdonald-Maier ◽  
Shoaib Ehsan

Author(s):  
Le Hui ◽  
Mingmei Cheng ◽  
Jin Xie ◽  
Jian Yang ◽  
Ming-Ming Cheng

2021 ◽  
Vol 8 ◽  
Author(s):  
Martin J. Pearson ◽  
Shirin Dora ◽  
Oliver Struckmeier ◽  
Thomas C. Knowles ◽  
Ben Mitchinson ◽  
...  

Recognising familiar places is a competence required in many engineering applications that interact with the real world such as robot navigation. Combining information from different sensory sources promotes robustness and accuracy of place recognition. However, mismatch in data registration, dimensionality, and timing between modalities remain challenging problems in multisensory place recognition. Spurious data generated by sensor drop-out in multisensory environments is particularly problematic and often resolved through adhoc and brittle solutions. An effective approach to these problems is demonstrated by animals as they gracefully move through the world. Therefore, we take a neuro-ethological approach by adopting self-supervised representation learning based on a neuroscientific model of visual cortex known as predictive coding. We demonstrate how this parsimonious network algorithm which is trained using a local learning rule can be extended to combine visual and tactile sensory cues from a biomimetic robot as it naturally explores a visually aliased environment. The place recognition performance obtained using joint latent representations generated by the network is significantly better than contemporary representation learning techniques. Further, we see evidence of improved robustness at place recognition in face of unimodal sensor drop-out. The proposed multimodal deep predictive coding algorithm presented is also linearly extensible to accommodate more than two sensory modalities, thereby providing an intriguing example of the value of neuro-biologically plausible representation learning for multimodal navigation.


2021 ◽  
Author(s):  
Matthew Gadd ◽  
Daniele De Martini ◽  
Paul Newman
Keyword(s):  

2021 ◽  
Author(s):  
Chao Zhang ◽  
Ignas Budvytis ◽  
Stephan Liwicki ◽  
Roberto Cipolla

Sign in / Sign up

Export Citation Format

Share Document