Decentralized guaranteed cost PID control for uncertain large-scale deterministic and stochastic discrete-time systems with additive gain

Author(s):  
Hiroaki Mukaidani ◽  
Hua Xu
2021 ◽  
Vol 9 (1) ◽  
pp. 232-242
Author(s):  
Pengyu Wen ◽  
Nan Hou ◽  
Yuxuan Shen ◽  
Jiahui Li ◽  
Yi Zhang

Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Yong-Hong Lan ◽  
Jun-Jun Xia ◽  
Yue-Xiang Shi

In this paper, a robust guaranteed-cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, a repetitive controller, combined with preview compensator, is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed-cost preview repetitive control problem is transformed into a guaranteed-cost control problem for the augmented dynamic system. For a given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by using a parameter-dependent Lyapunov function method and linear matrix inequality (LMI) techniques. Incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included, to show the effectiveness of the proposed method.


2020 ◽  
Vol 42 (10) ◽  
pp. 1797-1807 ◽  
Author(s):  
Shuhua Zhang ◽  
Ronghu Chi

This work explores a model-free adaptive PID (MFA-PID) control for nonlinear discrete-time systems with rigorous mathematical analysis under a data-driven framework. An improved compact form dynamic linearization (iCFDL) is proposed to transfer the original nonlinear system into an affined linear data model including a nonlinear residual term. Both a time-difference estimator and a gradient parameter estimator are designed to estimate the nonlinear residual uncertainties and the unknown parameters in the iCFDL model. Subsequently, a novel improved CFDL based MFA-PID (iCFDL-MFA-PID) control is proposed by incorporating these two estimators. The results are extended by the use of improved partial format dynamic linearization (iPFDL) and full format dynamic linearization (iFFDL). The theoretical results are shown using contraction mapping principle-based mathematical analysis, as well as simulations.


Sign in / Sign up

Export Citation Format

Share Document