Rotation, scale and translation invariant image watermarking using radon transform and fourier transform

Author(s):  
Lian Cai ◽  
Sidan Du
Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1795
Author(s):  
Manuel Cedillo-Hernandez ◽  
Antonio Cedillo-Hernandez ◽  
Francisco J. Garcia-Ugalde

Robust digital image watermarking is an information security technique that has been widely used to solve several issues related mainly with copyright protection as well as ownership authentication. In general terms, robust watermarking conceals a small signal called a “watermark” in a host image in a form imperceptible to human vision. The efficiency of conventional robust watermarking based on frequency domain depend directly on the results of performance in terms of robustness and imperceptibility. According to the application scenario and the image dataset, it is common practice to adjust the key parameters used by robust watermarking methods in an experimental form; however, this manual adjustment may involve exhaustive tasks and at the same time be a drawback in practical scenarios. In recent years, several optimization techniques have been adopted by robust watermarking to allowing adjusting in an automatic form its key operation parameters, improving thus its performance. In this context, this paper proposes an improved robust watermarking algorithm in discrete Fourier transform via spread spectrum, optimizing the key operation parameters, particularly the amounts of bands and coefficients of frequency as well as the watermark strength factor using particle swarm optimization in conjunction with visual information fidelity and bit correct rate criteria. Experimental results obtained in this research show improved robustness against common signal processing and geometric distortions, preserving a high visual quality in color images. Performance comparison with conventional discrete Fourier transform proposal is provided, as well as with the current state-of-the-art of particle swarm optimization applied to image watermarking.


Author(s):  
R. J. Elliott

Introduction. Spectral synthesis is the study of whether functions in a certain set, usually a translation invariant subspace (a variety), can be synthesized from certain simple functions, exponential monomials, which are contained in the set. This problem is transformed by considering the annihilator ideal in the dual space, and after taking the Fourier transform the problem becomes one of deciding whether a function is in a certain ideal, that is, we have a ‘division problem’. Because of this we must take into consideration the possibility of the Fourier transforms of functions having zeros of order greater than or equal to 1. This is why, in the original situation, we study whether varieties are generated by their exponential monomials, rather than just their exponential functions. This viewpoint of the problem as a division question, of course, perhaps throws light on why Wiener's Tauberian theorem works, and is implicit in the construction of Schwartz's and Malliavin's counter examples to spectral synthesis in L1(G) (cf. Rudin ((4))).


Sign in / Sign up

Export Citation Format

Share Document