Dicomization of LSM fluorescence composite microscopic image with its bioimaging information

Author(s):  
Yubraj Gupta ◽  
Carlos Costa ◽  
Eduardo Pinho ◽  
Luis A. Bastiao Silva ◽  
Shibarjun Mandal ◽  
...  
Keyword(s):  
2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


iScience ◽  
2021 ◽  
pp. 102724
Author(s):  
Yoshiyuki Noguchi ◽  
Fumi Kano ◽  
Nobuhiko Maiya ◽  
Chisako Iwamoto ◽  
Shoko Yamasaki ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 501-504
Author(s):  
Dennis Schmidt ◽  
Andreas Rausch ◽  
Thomas Schanze

AbstractThe Institute of Virology at the Philipps-Universität Marburg is currently researching possible drugs to combat the Marburg virus. This involves classifying cell structures based on fluoroscopic microscopic image sequences. Conventionally, membranes of cells must be marked for better analysis, which is time consuming. In this work, an approach is presented to identify cell structures in images that are marked for subviral particles. It could be shown that there is a correlation between the distribution of subviral particles in an infected cell and the position of the cell’s structures. The segmentation is performed with a "Mask-R-CNN" algorithm, presented in this work. The model (a region-based convolutional neural network) is applied to enable a robust and fast recognition of cell structures. Furthermore, the network architecture is described. The proposed method is tested on data evaluated by experts. The results show a high potential and demonstrate that the method is suitable.


Author(s):  
Xiaochun Wang ◽  
Chen Chen ◽  
Jiangping Yuan ◽  
Guangxue Chen

Full-color three-dimensional (3D) printing technology is a powerful process to manufacture intelligent customized colorful objects with improved surface qualities; however, poor surface color optimization methods are the main impeding factors for its commercialization. As such, the paper explored the correlation between microstructure and color reproduction, then an assessment and prediction method of color optimization based on microscopic image analysis was proposed. The experimental models were divided into 24-color plates and 4-color cubes printed by ProJet 860 3D printer, then impregnated according to preset parameters, at last measured by a spectrophotometer and observed using both a digital microscope and a scanning electron microscope. The results revealed that the samples manifested higher saturation and smaller chromatic aberration ([Formula: see text]) after postprocessing. Moreover, the brightness of the same color surface increased with the increasing soaked surface roughness. Further, reduction in surface roughness, impregnation into surface pores, and enhancement of coating transparency effectively improved the accuracy of color reproduction, which could be verified by the measured values. Finally, the chromatic aberration caused by positioning errors on different faces of the samples was optimized, and the value of [Formula: see text] for a black cube was reduced from 8.12 to 0.82, which is undetectable to human eyes.


2010 ◽  
Vol 21 (7) ◽  
pp. 075403 ◽  
Author(s):  
Mohamed Esmail ◽  
Nobuyuki Kawahara ◽  
Eiji Tomita ◽  
Mamoru Sumida

Microscopy ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 31-36
Author(s):  
Ji-Youn Kim ◽  
Youngjin Lee

Abstract This study aimed to develop and evaluate an improved median filter (IMF) with an adaptive mask size for light microscope (LM) images. We acquired images of the mouse first molar using a LM at 100× magnification. The images obtained using our proposed IMF were compared with those from a conventional median filter. Several parameters such as the contrast-to-noise ratio, coefficient of variation, no-reference assessments and peak signal-to-noise ratio were employed to evaluate the image quality quantitatively. The results demonstrated that the proposed IMF could effectively de-noise the LM images and preserve the image details, achieving a better performance than the conventional median filter.


Sign in / Sign up

Export Citation Format

Share Document