Multihop Routing Protocol with Unequal Clustering for Wireless Sensor Networks

Author(s):  
Bencan Gong ◽  
Layuan Li ◽  
Shaorong Wang ◽  
Xuejun Zhou
2012 ◽  
Vol 23 (5) ◽  
pp. 1222-1232 ◽  
Author(s):  
Chang-Jiang JIANG ◽  
Wei-Ren SHI ◽  
Xian-Lun TANG ◽  
Ping WANG ◽  
Min XIANG

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Abdellah Chehri ◽  
Hussein T. Mouftah

Wireless sensor networks (WSNs) are considered as a suitable solution for long-time and large-scale outdoor environmental monitoring. However, an important feature that distinguishes the WSNs from traditional monitoring systems is their energy constraints. In fact, these nodes have often a limited and usually nonreplenishable power source. Therefore managing these limited resources is a key challenge. In this paper we use an optimization scheme based on adaptive modulation and power control for a green routing protocol. The optimization mechanism is subject to certain QoS requirements in terms of total end-to-end delay time and bit error rate. The simulation results show that the proposed algorithm can, theoretically, reduce the consumed energy of the sensor nodes almost to half.


2011 ◽  
Vol 186 ◽  
pp. 225-229
Author(s):  
Chang Jiang Jiang ◽  
Wei Ren Shi ◽  
Min Xiang

Unequal clustering mechanism, in combination with inter-cluster multihop routing, provides a new effective way to balance the energy dissipation among nodes and prolong the lifetime of wireless sensor networks. In this paper, a distributed energy-efficient unequal clustering mechanism (DEEUC) is proposed and evaluated. By a time based competitive clustering algorithm, DEEUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the “hot-spots” problem can be avoided. For inter-cluster communication, DEEUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime


2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987938 ◽  
Author(s):  
Fang Zhu ◽  
Junfang Wei

Wireless sensor networks have drawn tremendous attentions from all fields because of their wide application. Maximizing network lifetime is one of the main problems in wireless sensor networks. This article proposes an energy-efficient routing protocol which adopts unequal clustering technology to solve the hot spots problem and proposes double cluster head strategy to reduce the energy consumption of head nodes in the clusters. In addition, to balance the energy consumption between cluster heads and cluster members, a hybrid cluster head rotation strategy based on time-driven and energy-driven is proposed, which can make the timing of rotation more reasonable and the energy consumption more efficient. Finally, we compare the proposed protocol with LEACH, DEBUC, and UCNPD by simulation experiments. The simulation results prove that our proposed protocol can effectively improve the performance in terms of network lifetime, energy consumption, energy balance, stability, and throughput.


Sign in / Sign up

Export Citation Format

Share Document