multihop routing
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 23)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 10 (12) ◽  
pp. 25447-25452
Author(s):  
Mr. Muthukumar. S ◽  
Dr. Dinesh Senduraja

In energy limited wireless sensor networks, both local quantization andmultihop transmission are essential to save transmission energy and thus prolong the network lifetime. The goal is to maximize the network lifetime, defined as the estimation task cycles accomplished before the network becomes nonfunctional.The network lifetime optimization problem includes three components: Optimizing source coding at each sensor node, optimizing source throughput at each sensor node.Optimizing multihop routing path. Source coding optimization can be decoupled from source throughput and multihop routing path optimization and is solved by introducing a concept of equivalent 1-bit Mean Square Error (MSE) function. Based on optimal source coding, multihop routing path optimization is formulated as a linear programming problem, which suggests a new notion of character based routing. It is also seen that optimal multihop routing improves the network lifetime bound significantly compared with single-hop routing for heterogeneous networks. Furthermore, the gain is more significant when the network is denser since there are more opportunities for multihop routing. Also the gain is more significant when the observation noise variances are more diverse.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Yong ◽  
Zhou Lin ◽  
Wei Qian ◽  
Bai Ke ◽  
Wang Chen ◽  
...  

In wireless sensor networks (WSNs), due to the limited energy of sensor nodes, how to design efficient hierarchical routing algorithms to balance network resources and extend network life is an important problem to be solved. Aiming at the problems such as random selection of cluster head, redundancy of working node, and construction of cluster head transmission path, which affect network energy consumption, this paper proposes a multihop routing algorithm based on path tree (MHRA-PT) to optimize the network energy. Firstly, some nodes are those close to the base station and have large remaining energy which are selected to construct a cluster head set. Then, after clustering, each cluster is divided into different regions, and in each region, nodes with residual energy greater than the average residual energy of the cluster are selected as a working node. Finally, the cluster heads are sorted according to their distance from base station, and the next hop node is selected for each cluster head in turn until a path tree rooted at base station is formed completely, leading to data transmission from working node to base station. Simulation results show that the proposed algorithm can effectively reduce network energy consumption, balance network resources, and prolong network life cycle.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jiajie Ren ◽  
Demin Li ◽  
Lei Zhang ◽  
Guanglin Zhang

Content-centric networks (CCNs) have become a promising technology for relieving the increasing wireless traffic demands. In this paper, we explore the scaling performance of mobile content-centric networks based on the nonuniform spatial distribution of nodes, where each node moves around its own home point and requests the desired content according to a Zipf distribution. We assume each mobile node is equipped with a finite local cache, which is applied to cache contents following a static cache allocation scheme. According to the nonuniform spatial distribution of cache-enabled nodes, we introduce two kinds of clustered models, i.e., the clustered grid model and the clustered random model. In each clustered model, we analyze throughput and delay performance when the number of nodes goes infinity by means of the proposed cell-partition scheduling scheme and the distributed multihop routing scheme. We show that the node mobility degree and the clustering behavior play the fundamental roles in the aforementioned asymptotic performance. Finally, we study the optimal cache allocation problem in the two kinds of clustered models. Our findings provide a guidance for developing the optimal caching scheme. We further perform the numerical simulations to validate the theoretical scaling laws.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1630
Author(s):  
Asha Jerlin Manuel ◽  
Ganesh Gopal Deverajan ◽  
Rizwan Patan ◽  
Amir H. Gandomi

In today’s sensor network research, numerous technologies are used for the enhancement of earlier studies that focused on cost-effectiveness in addition to time-saving and novel approaches. This survey presents complete details about those earlier models and their research gaps. In general, clustering is focused on managing the energy factors in wireless sensor networks (WSNs). In this study, we primarily concentrated on multihop routing in a clustering environment. Our study was classified according to cluster-related parameters and properties and is subdivided into three approach categories: (1) parameter-based, (2) optimization-based, and (3) methodology-based. In the entire category, several techniques were identified, and the concept, parameters, advantages, and disadvantages are elaborated. Based on this attempt, we provide useful information to the audience to be used while they investigate their research ideas and to develop a novel model in order to overcome the drawbacks that are present in the WSN-based clustering models.


Sign in / Sign up

Export Citation Format

Share Document