Delay-dependent control synthesis of stochastic Takagi-Sugeno fuzzy systems with input time-delays

Author(s):  
Yongsheng Chen ◽  
Xiaopeng Xie
Author(s):  
Zhaona Chen ◽  
Vesna M. Ojleska ◽  
Yuanwei Jing ◽  
Tatjana D. Kolemisevska-Gugulovska ◽  
Georgi M. Dimirovski

2009 ◽  
Vol 160 (4) ◽  
pp. 403-422 ◽  
Author(s):  
Bing Chen ◽  
Xiaoping Liu ◽  
Chong Lin ◽  
Kefu Liu

2016 ◽  
Vol 207 ◽  
pp. 793-804 ◽  
Author(s):  
Anh-Tu Nguyen ◽  
Thomas Laurain ◽  
Reinaldo Palhares ◽  
Jimmy Lauber ◽  
Chouki Sentouh ◽  
...  

2011 ◽  
Vol 20 (08) ◽  
pp. 1571-1589 ◽  
Author(s):  
K. H. TSENG ◽  
J. S. H. TSAI ◽  
C. Y. LU

This paper deals with the problem of globally delay-dependent robust stabilization for Takagi–Sugeno (T–S) fuzzy neural network with time delays and uncertain parameters. The time delays comprise discrete and distributed interval time-varying delays and the uncertain parameters are norm-bounded. Based on Lyapunov–Krasovskii functional approach and linear matrix inequality technique, delay-dependent sufficient conditions are derived for ensuring the exponential stability for the closed-loop fuzzy control system. An important feature of the result is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using the proposed techniques for achieving delay dependence. Another feature of the results lies in that involves fewer matrix variables. Two illustrative examples are exploited in order to illustrate the effectiveness of the proposed design methods.


2019 ◽  
Vol 29 (09) ◽  
pp. 2050134 ◽  
Author(s):  
Khadija Naamane ◽  
El Houssaine Tissir

This paper focuses on the problem of delay-dependent stability for nonlinear quadratic Takagi–Sugeno (TS) fuzzy systems with time-varying delay using the input–output approach. The results are based on the model transformation by employing a three-terms approximation of delayed state vector. By applying the scaled small-gain theorem and Lyapunov–Krasovskii functional, the stability criteria is obtained in terms of linear matrix inequalities. Furthermore, the Wirtinger-based integral inequality approach has been employed to derive less conservative results. Finally, the numerical examples are provided to demonstrate the effectiveness of the obtained results and for comparison with previous work.


Author(s):  
R. Sakthivel ◽  
P. Vadivel ◽  
K. Mathiyalagan ◽  
A. Arunkumar

This paper is concerned with the problem of robust reliable H∞ control for a class of uncertain Takagi-Sugeno (TS) fuzzy systems with actuator failures and time-varying delay. The main objective is to design a state feedback reliable H∞ controller such that, for all admissible uncertainties as well as actuator failure cases, the resulting closed-loop system is robustly asymptotically stable with a prescribed H∞ performance level. Based on the Lyapunov-Krasovskii functional (LKF) method together with linear matrix inequality (LMI) technique, a delay dependent sufficient condition is established in terms of LMIs for the existence of robust reliable H∞ controller. When these LMIs are feasible, a robust reliable H∞ controller can be obtained. Finally, two numerical examples with simulation result are utilized to illustrate the applicability and effectiveness of our obtained result.


Sign in / Sign up

Export Citation Format

Share Document