New structure of Kalman filter base on adaptive genetic algorithm for radar networking

Author(s):  
Yan Mingming ◽  
Pan Wei
2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Feng Lu ◽  
Yafan Wang ◽  
Jinquan Huang ◽  
Qihang Wang

AbstractA hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 924
Author(s):  
Zhenzhen Huang ◽  
Qiang Niu ◽  
Ilsun You ◽  
Giovanni Pau

Wearable devices used for human body monitoring has broad applications in smart home, sports, security and other fields. Wearable devices provide an extremely convenient way to collect a large amount of human motion data. In this paper, the human body acceleration feature extraction method based on wearable devices is studied. Firstly, Butterworth filter is used to filter the data. Then, in order to ensure the extracted feature value more accurately, it is necessary to remove the abnormal data in the source. This paper combines Kalman filter algorithm with a genetic algorithm and use the genetic algorithm to code the parameters of the Kalman filter algorithm. We use Standard Deviation (SD), Interval of Peaks (IoP) and Difference between Adjacent Peaks and Troughs (DAPT) to analyze seven kinds of acceleration. At last, SisFall data set, which is a globally available data set for study and experiments, is used for experiments to verify the effectiveness of our method. Based on simulation results, we can conclude that our method can distinguish different activity clearly.


2013 ◽  
Vol 694-697 ◽  
pp. 2895-2900 ◽  
Author(s):  
Xiao Yang ◽  
Bo Jiang

Since the beginning of the twenty-first century, energy conservation has become the theme of the development of the world. China government set the emissions-reduction targets in various industries on the 12th Five-Year Plan. And the airlines were committed to reduce their carbon emissions. From an operational perspective, the airline model assignment problem is a key factor of the total carbon emissions on the entire route network. But the traditional aircraft assignment models approach did not account for this purpose to reduce carbon emissions. By constructing the multi-objective optimization models consider carbon emissions assignment model using a genetic algorithm, numerical example shows that the model is able to meet all aspects demand which include meeting route network capacity demand, minimizing operating costs and reducing total aircraft fleet carbon emissions.


Sign in / Sign up

Export Citation Format

Share Document