Vehicle detection method based on deep learning and multi-layer feature fusion

Author(s):  
Zhao Min ◽  
Jia Jian ◽  
Sun Dihua ◽  
Tang Yi
Author(s):  
M. Cao ◽  
H. Ji ◽  
Z. Gao ◽  
T. Mei

Abstract. Vehicle detection in remote sensing image has been attracting remarkable attention over past years for its applications in traffic, security, military, and surveillance fields. Due to the stunning success of deep learning techniques in object detection community, we consider to utilize CNNs for vehicle detection task in remote sensing image. Specifically, we take advantage of deep residual network, multi-scale feature fusion, hard example mining and homography augmentation to realize vehicle detection, which almost integrates all the advanced techniques in deep learning community. Furthermore, we simultaneously address super-resolution (SR) and detection problems of low-resolution (LR) image in an end-to-end manner. In consideration of the absence of paired low-/highresolution data which are generally time-consuming and cumbersome to collect, we leverage generative adversarial network (GAN) for unsupervised SR. Detection loss is back-propagated to SR generator to boost detection performance. We conduct experiments on representative benchmark datasets and demonstrate that our model yields significant improvements over state-of-the-art methods in deep learning and remote sensing areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lvjiyuan Jiang ◽  
Haifeng Wang ◽  
Kai Yan ◽  
Chengjiang Zhou ◽  
Songlin Li ◽  
...  

Object detection-based deep learning by using the looking and thinking twice mechanism plays an important role in electrical construction work. Nevertheless, the use of this mechanism in object detection produces some problems, such as calculation pressure caused by multilayer convolution and redundant features that confuse the network. In this paper, we propose a self-recurrent learning and gap sample feature fusion-based object detection method to solve the aforementioned problems. The network consists of three modules: self-recurrent learning-based feature fusion (SLFF), residual enhancement architecture-based multichannel (REAML), and gap sample-based features fusion (GSFF). SLFF detects objects in the background through an iterative convolutional network. REAML, which serves as an information filtering module, is used to reduce the interference of redundant features in the background. GSFF adds feature augmentation to the network. Simultaneously, our model can effectively improve the operation and production efficiency of electric power companies’ personnel and guarantee the safety of lives and properties.


Author(s):  
Yanni Yang ◽  
Huansheng Song ◽  
Shijie Sun ◽  
Wentao Zhang ◽  
Yan Chen ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2012
Author(s):  
JongBae Kim

This paper proposes a real-time detection method for a car driving ahead in real time on a tunnel road. Unlike the general road environment, the tunnel environment is irregular and has significantly lower illumination, including tunnel lighting and light reflected from driving vehicles. The environmental restrictions are large owing to pollution by vehicle exhaust gas. In the proposed method, a real-time detection method is used for vehicles in tunnel images learned in advance using deep learning techniques. To detect the vehicle region in the tunnel environment, brightness smoothing and noise removal processes are carried out. The vehicle region is learned after generating a learning image using the ground-truth method. The YOLO v2 model, with an optimal performance compared to the performances of deep learning algorithms, is applied. The training parameters are refined through experiments. The vehicle detection rate is approximately 87%, while the detection accuracy is approximately 94% for the proposed method applied to various tunnel road environments.


Sign in / Sign up

Export Citation Format

Share Document