scholarly journals VEHICLE DETECTION IN REMOTE SENSING IMAGES USING DEEP NEURAL NETWORKS AND MULTI-TASK LEARNING

Author(s):  
M. Cao ◽  
H. Ji ◽  
Z. Gao ◽  
T. Mei

Abstract. Vehicle detection in remote sensing image has been attracting remarkable attention over past years for its applications in traffic, security, military, and surveillance fields. Due to the stunning success of deep learning techniques in object detection community, we consider to utilize CNNs for vehicle detection task in remote sensing image. Specifically, we take advantage of deep residual network, multi-scale feature fusion, hard example mining and homography augmentation to realize vehicle detection, which almost integrates all the advanced techniques in deep learning community. Furthermore, we simultaneously address super-resolution (SR) and detection problems of low-resolution (LR) image in an end-to-end manner. In consideration of the absence of paired low-/highresolution data which are generally time-consuming and cumbersome to collect, we leverage generative adversarial network (GAN) for unsupervised SR. Detection loss is back-propagated to SR generator to boost detection performance. We conduct experiments on representative benchmark datasets and demonstrate that our model yields significant improvements over state-of-the-art methods in deep learning and remote sensing areas.

2021 ◽  
Author(s):  
Jiaoyue Li ◽  
Weifeng Liu ◽  
Kai Zhang ◽  
Baodi Liu

Remote sensing image super-resolution (SR) plays an essential role in many remote sensing applications. Recently, remote sensing image super-resolution methods based on deep learning have shown remarkable performance. However, directly utilizing the deep learning methods becomes helpless to recover the remote sensing images with a large number of complex objectives or scene. So we propose an edge-based dense connection generative adversarial network (SREDGAN), which minimizes the edge differences between the generated image and its corresponding ground truth. Experimental results on NWPU-VHR-10 and UCAS-AOD datasets demonstrate that our method improves 1.92 and 0.045 in PSNR and SSIM compared with SRGAN, respectively.


2021 ◽  
Vol 35 (5) ◽  
pp. 395-401
Author(s):  
Mohan Mahanty ◽  
Debnath Bhattacharyya ◽  
Divya Midhunchakkaravarthy

Colon cancer is thought about as the third most regularly identified cancer after Brest and lung cancer. Most colon cancers are adenocarcinomas developing from adenomatous polyps, grow on the intima of the colon. The standard procedure for polyp detection is colonoscopy, where the success of the standard colonoscopy depends on the colonoscopist experience and other environmental factors. Nonetheless, throughout colonoscopy procedures, a considerable number (8-37%) of polyps are missed due to human mistakes, and these missed polyps are the prospective reason for colorectal cancer cells. In the last few years, many research groups developed deep learning-based computer-aided (CAD) systems that recommended many techniques for automated polyp detection, localization, and segmentation. Still, accurate polyp detection, segmentation is required to minimize polyp miss out rates. This paper suggested a Super-Resolution Generative Adversarial Network (SRGAN) assisted Encoder-Decoder network for fully automated colon polyp segmentation from colonoscopic images. The proposed deep learning model incorporates the SRGAN in the up-sampling process to achieve more accurate polyp segmentation. We examined our model on the publicly available benchmark datasets CVC-ColonDB and Warwick- QU. The model accomplished a dice score of 0.948 on the CVC-ColonDB dataset, surpassed the recently advanced state-of-the-art (SOTA) techniques. When it is evaluated on the Warwick-QU dataset, it attains a Dice Score of 0.936 on part A and 0.895 on Part B. Our model showed more accurate results for sessile and smaller-sized polyps.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 431
Author(s):  
Yuwu Wang ◽  
Guobing Sun ◽  
Shengwei Guo

With the widespread use of remote sensing images, low-resolution target detection in remote sensing images has become a hot research topic in the field of computer vision. In this paper, we propose a Target Detection on Super-Resolution Reconstruction (TDoSR) method to solve the problem of low target recognition rates in low-resolution remote sensing images under foggy conditions. The TDoSR method uses the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) to perform defogging and super-resolution reconstruction of foggy low-resolution remote sensing images. In the target detection part, the Rotation Equivariant Detector (ReDet) algorithm, which has a higher recognition rate at this stage, is used to identify and classify various types of targets. While a large number of experiments have been carried out on the remote sensing image dataset DOTA-v1.5, the results of this paper suggest that the proposed method achieves good results in the target detection of low-resolution foggy remote sensing images. The principal result of this paper demonstrates that the recognition rate of the TDoSR method increases by roughly 20% when compared with low-resolution foggy remote sensing images.


2021 ◽  
Vol 13 (9) ◽  
pp. 1858
Author(s):  
Xubin Feng ◽  
Wuxia Zhang ◽  
Xiuqin Su ◽  
Zhengpu Xu

High spatial quality (HQ) optical remote sensing images are very useful for target detection, target recognition and image classification. Due to the influence of imaging equipment accuracy and atmospheric environment, HQ images are difficult to acquire, while low spatial quality (LQ) remote sensing images are very easy to acquire. Hence, denoising and super-resolution (SR) reconstruction technology are the most important solutions to improve the quality of remote sensing images very effectively, which can lower the cost as much as possible. Most existing methods usually only employ denoising or SR technology to obtain HQ images. However, due to the complex structure and the large noise of remote sensing images, the quality of the remote sensing image obtained only by denoising method or SR method cannot meet the actual needs. To address these problems, a method of reconstructing HQ remote sensing images based on Generative Adversarial Network (GAN) named “Restoration Generative Adversarial Network with ResNet and DenseNet” (RRDGAN) is proposed, which can acquire better quality images by incorporating denoising and SR into a unified framework. The generative network is implemented by fusing Residual Neural Network (ResNet) and Dense Convolutional Network (DenseNet) in order to consider denoising and SR problems at the same time. Then, total variation (TV) regularization is used to furthermore enhance the edge details, and the idea of Relativistic GAN is explored to make the whole network converge better. Our RRDGAN is implemented in wavelet transform (WT) domain, since different frequency parts could be handled separately in the wavelet domain. The experimental results on three different remote sensing datasets shows the feasibility of our proposed method in acquiring remote sensing images.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4867
Author(s):  
Lu Chen ◽  
Hongjun Wang ◽  
Xianghao Meng

With the development of science and technology, neural networks, as an effective tool in image processing, play an important role in gradual remote-sensing image-processing. However, the training of neural networks requires a large sample database. Therefore, expanding datasets with limited samples has gradually become a research hotspot. The emergence of the generative adversarial network (GAN) provides new ideas for data expansion. Traditional GANs either require a large number of input data, or lack detail in the pictures generated. In this paper, we modify a shuffle attention network and introduce it into GAN to generate higher quality pictures with limited inputs. In addition, we improved the existing resize method and proposed an equal stretch resize method to solve the problem of image distortion caused by different input sizes. In the experiment, we also embed the newly proposed coordinate attention (CA) module into the backbone network as a control test. Qualitative indexes and six quantitative evaluation indexes were used to evaluate the experimental results, which show that, compared with other GANs used for picture generation, the modified Shuffle Attention GAN proposed in this paper can generate more refined and high-quality diversified aircraft pictures with more detailed features of the object under limited datasets.


2018 ◽  
Vol 10 (6) ◽  
pp. 964 ◽  
Author(s):  
Zhenfeng Shao ◽  
Ke Yang ◽  
Weixun Zhou

Benchmark datasets are essential for developing and evaluating remote sensing image retrieval (RSIR) approaches. However, most of the existing datasets are single-labeled, with each image in these datasets being annotated by a single label representing the most significant semantic content of the image. This is sufficient for simple problems, such as distinguishing between a building and a beach, but multiple labels and sometimes even dense (pixel) labels are required for more complex problems, such as RSIR and semantic segmentation.We therefore extended the existing multi-labeled dataset collected for multi-label RSIR and presented a dense labeling remote sensing dataset termed "DLRSD". DLRSD contained a total of 17 classes, and the pixels of each image were assigned with 17 pre-defined labels. We used DLRSD to evaluate the performance of RSIR methods ranging from traditional handcrafted feature-based methods to deep learning-based ones. More specifically, we evaluated the performances of RSIR methods from both single-label and multi-label perspectives. These results demonstrated the advantages of multiple labels over single labels for interpreting complex remote sensing images. DLRSD provided the literature a benchmark for RSIR and other pixel-based problems such as semantic segmentation.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Fayaz Ali Dharejo ◽  
Farah Deeba ◽  
Yuanchun Zhou ◽  
Bhagwan Das ◽  
Munsif Ali Jatoi ◽  
...  

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR) . However, the generated image still suffers from undesirable artifacts such as the absence of texture-feature representation and high-frequency information. We propose a frequency domain-based spatio-temporal remote sensing single image super-resolution technique to reconstruct the HR image combined with generative adversarial networks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporating Wavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image has been split into various frequency bands by using the WT, whereas the transfer generative adversarial network predicts high-frequency components via a proposed architecture. Finally, the inverse transfer of wavelets produces a reconstructed image with super-resolution. The model is first trained on an external DIV2 K dataset and validated with the UC Merced Landsat remote sensing dataset and Set14 with each image size of 256 × 256. Following that, transferred GANs are used to process spatio-temporal remote sensing images in order to minimize computation cost differences and improve texture information. The findings are compared qualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of the GPU memory during training and accelerated the execution of our simplified version by eliminating batch normalization layers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Tian ◽  
Xiaorou Zhong ◽  
Ming Chen

Accurate remote sensing image segmentation can guide human activities well, but current image semantic segmentation methods cannot meet the high-precision semantic recognition requirements of complex images. In order to further improve the accuracy of remote sensing image semantic segmentation, this paper proposes a new image semantic segmentation method based on Generative Adversarial Network (GAN) and Fully Convolutional Neural Network (FCN). This method constructs a deep semantic segmentation network based on FCN, which can enhance the receptive field of the model. GAN is integrated into FCN semantic segmentation network to synthesize the global image feature information and then accurately segment the complex remote sensing image. Through experiments on a variety of datasets, it can be seen that the proposed method can meet the high-efficiency requirements of complex image semantic segmentation and has good semantic segmentation capabilities.


Sign in / Sign up

Export Citation Format

Share Document