Trajectory Tracking Control of Differential Steering Mobile Robot Based on Fuzzy Logic under Time Constraints

Author(s):  
Yaoyao Tan ◽  
Baoyu Wen ◽  
Chunting Jiao ◽  
Xiaojie Su ◽  
Fangzheng Xue
2012 ◽  
Vol 590 ◽  
pp. 268-271 ◽  
Author(s):  
Da Lei Li ◽  
Zhan Shu He ◽  
Yue Feng Yin

A new method for controlling the steering and trajectory of the electric mobile robot is proposed. In order to control the robot’s position and heading, the path error and the heading error of the robot are taken into the control closed loop. On the basis of the self-adaptive PID control method combined with preview theory and fuzzy logic, a trajectory tracking control system is designed. Finally, experiments and simulation are conducted to test the control system. Both experimental and simulation results show that the mobile robot can approach the target trajectory quickly and then move along it, which confirm the validity and the efficiency of the trajectory tracking control system.


2021 ◽  
pp. 107754632199918
Author(s):  
Rongrong Yu ◽  
Shuhui Ding ◽  
Heqiang Tian ◽  
Ye-Hwa Chen

The dynamic modeling and trajectory tracking control of a mobile robot is handled by a hierarchical constraint approach in this study. When the wheeled mobile robot with complex generalized coordinates has structural constraints and motion constraints, the number of constraints is large and the properties of them are different. Therefore, it is difficult to get the dynamic model and trajectory tracking control force of the wheeled mobile robot at the same time. To solve the aforementioned problem, a creative hierarchical constraint approach based on the Udwadia–Kalaba theory is proposed. In this approach, constraints are classified into two levels, structural constraints are the first level and motion constraints are the second level. In the second level constraint, arbitrary initial conditions may cause the trajectory to diverge. Thus, we propose the asymptotic convergence criterion to deal with it. Then, the analytical dynamic equation and trajectory tracking control force of the wheeled mobile robot can be obtained simultaneously. To verify the effectiveness and accuracy of this methodology, a numerical simulation of a three-wheeled mobile robot is carried out.


Sign in / Sign up

Export Citation Format

Share Document