Dynamics Modeling and Control of Humanoid Robot Arm with 7DOF Actuated by Pneumatic Artificial Muscles

Author(s):  
Pei Mengyao ◽  
Gong Daoxiong
2014 ◽  
Vol 875-877 ◽  
pp. 1961-1966
Author(s):  
Hui Jin Mu

In recent years, modeling and control of flexible space robots are extensively researched. Compared with traditional rigid robots, flexible robots have low energy consumption, wide operating space, high carrying capacity and other characteristics. However, due to its special structure, the robot arm will get deformation and vibration in motion, which brings a lot of problems to the positioning and tracking control of flexible space robots. Therefore, directing at the dynamics modeling and control issues of the free-floating flexible dual-arm space robots, this article carries out in-depth study. This paper first studies the elastic deformation and vibration of the flexible space manipulator and the robust control problem of the system trajectory tracking for free-floating flexible dual-arm space robots.


2019 ◽  
Vol 26 (11-12) ◽  
pp. 989-1000
Author(s):  
Pingxin Wang ◽  
Xiaoting Rui ◽  
Hailong Yu ◽  
Bo Li

Track assemblies are widely used to reduce vehicles’ ground pressure and improve their off-road performance. During off-road, the track tension has a significant effect on the performance of the crawler driving system. Previous control strategies only make use of the motions of partial road wheels. This paper develops a logical improvement to govern the motion of the track tensioner by using all road wheels. First, a dynamic model of the hydraulic-mechanism coupling system is established using the transfer matrix method for multibody systems and pressure-flow equations. Then, in order to get the angle of the idler arm, a modeling method of wheel envelope perimeter is developed, which is based on the locations of all wheels. Simulation results indicate that the control system maintains the wheel envelope perimeter almost constant while road wheels swing and decrease the possibility of peel-off and breakage of the track. It alleviates the track repeated stretch and keeps the tension in a stable range to reduce the fatigue damage. The control strategy can effectively reduce the peak value of the upper track tension during a vehicle passing through obstacles. This study suggests that the active track tensioning system can be implemented to improve the driving properties of tracked vehicles.


Sign in / Sign up

Export Citation Format

Share Document