Wireless Sensor Network Renewable Energy Source Life Estimation

Author(s):  
John Paul M. Torregoza ◽  
In-Yeup Kong ◽  
Won-Joo Hwang
Author(s):  
Sean O’Connor ◽  
Junhee Kim ◽  
Jerome P. Lynch ◽  
Kincho H. Law ◽  
Liming Salvino

Fatigue is one of the most widespread damage mechanisms found in metallic structures. Fatigue is an accumulated degradation process that occurs under cyclic loading, eventually inducing cracking at stress concentration points. Fatigue-related cracking in operating structures is closely related with statistical loading characteristics, such as the number of load cycles, cycle amplitudes and means. With fatigue cracking a prevalent failure mechanism of many engineered structures including ships, bridges and machines, among others, a reliable method of fatigue life estimation is direly needed for future structural health monitoring systems. In this study, a strategy for fatigue life estimation by a wireless sensor network installed in a structure for autonomous health monitoring is proposed. Specifically, the computational resources available at the sensor node are leveraged to compress raw strain time histories of a structure into a more meaningful and compressed form. Simultaneous strain sensing and on-board rainflow counting are conducted at individual wireless sensors with fatigue life prediction made using extracted amplitudes and means. These parameters are continuously updated during long-term monitoring of the structure. Histograms of strain amplitudes and means stored in the wireless sensor represent a highly compressed form of the original raw data. Communication of the histogram only needs to be done by request, dramatically reducing power consumption in the wireless sensing network. Experimental tests with aluminum specimens in the laboratory are executed for verification of the proposed damage detection strategy.


Author(s):  
A. A. Ijah ◽  
O. W. Bolaji ◽  
O. O. Adedire ◽  
J. Z. Emmanuel ◽  
N. E. Onwuegbunam ◽  
...  

This study shows how to monitor the movement of cattle using wireless sensor nodes powered by a renewable energy source capable of detecting location. Performance analysis was carried out on the energy consumption pattern of the nodes which indicated that throughout the monitoring period, the average energy consumed by the nodes was thus; master node 6450 joules, node one 1680 joules, node two 1656 joules, node three 1676 joules, node four 1656 joules. The rate of energy consumption was sustained by the renewable energy source. It was equally observed that energy consumption increased depending on how often query was sent and how often the conditions of monitoring was violated. This is to guarantee that information about cattle location gets to the base without delay due to battery failure which has been a major challenge faced with the current existing systems in tackling cattle rustling.


Sign in / Sign up

Export Citation Format

Share Document