Towards greening a campus grid: Free cooling during unsociable hours

Author(s):  
Jun Okitsu ◽  
Ken Naono ◽  
Shaharin Anwar Sulaiman ◽  
Nordin Zakaria ◽  
Alan Oxley
Keyword(s):  
2019 ◽  
Author(s):  
Mohammed Khalfan ◽  
Mohammed Sameer Baig

2021 ◽  
Vol 13 (8) ◽  
pp. 4563
Author(s):  
Nuno Baía Baía Saraiva ◽  
Luisa Dias Dias Pereira ◽  
Adélio Rodrigues Gaspar ◽  
José Joaquim da Costa

The adaptation of spaces to different usage typologies can be complex in heritage buildings. Facilities were initially planned for a specific type of use that, when changed, require additional measures to ensure a suitable indoor environment. Passive strategies—e.g., free cooling—are commonly used as an alternative without requiring equipment installation. However, its implementation often leads to unsatisfactory conditions. Therefore, it is important to clarify the main barriers to achieving thermal comfort in readapted historic buildings. The present work investigates the thermal comfort conditions reported by workers in office spaces of a historic building in the University of Coimbra. A monitoring campaign was carried out between May and September 2020 to assess indoor conditions’ quality. Due to the current pandemic of COVID-19, offices were not occupied at full capacity. A one-day evaluation of thermal comfort was made using a climate analyzer and six occupants were surveyed on 19 August 2020. The main results highlighted discomfort due to overheating of spaces. The causes were related to the combination of inadequate implementation of the free cooling actions and the building use. Furthermore, it was recommended the installation of HVAC systems in case of full capacity.


2013 ◽  
Vol 368-370 ◽  
pp. 1232-1236
Author(s):  
Wei Xue Cao ◽  
Ru Chang ◽  
Can Zhang ◽  
Qiu Li Zhang

Ground-Source Heat Pump systems and tower cooling system have been studied in this paper individually by experiment and simulation using TRNSYS, the influencing factors such as meteorological parameter, cooling tower and subunit construction was analyzed. Results show that the combined system has ability to meet the cooling requirements in II building climate zones, the combined system will have energy-saving and obvious economic benefits by working through the year.


2010 ◽  
Vol 1 (08) ◽  
pp. 1404-1409
Author(s):  
C. Isetti ◽  
E. Nannei ◽  
B. Orlandini

Sign in / Sign up

Export Citation Format

Share Document