Real-time attitude estimation techniques applied to a four rotor helicopter

Author(s):  
M.G. Earl ◽  
R. D'Andrea
Author(s):  
Tingting Yin ◽  
Zhong Yang ◽  
Youlong Wu ◽  
Fangxiu Jia

The high-precision roll attitude estimation of the decoupled canards relative to the projectile body based on the bipolar hall-effect sensors is proposed. Firstly, the basis engineering positioning method based on the edge detection is introduced. Secondly, the simplified dynamic relative roll model is established where the feature parameters are identified by fuzzy algorithms, while the high-precision real-time relative roll attitude estimation algorithm is proposed. Finally, the trajectory simulations and grounded experiments have been conducted to evaluate the advantages of the proposed method. The positioning error is compared with the engineering solution method, and it is proved that the proposed estimation method has the advantages of the high accuracy and good real-time performance.


2010 ◽  
Vol 7 (10) ◽  
pp. 322-337 ◽  
Author(s):  
Rami D. Abousleiman ◽  
Osamah A. Rawashdeh ◽  
Mohammad-Reza Siadat

Author(s):  
Ernest D. Fasse ◽  
Albert J. Wavering

Abstract This paper develops extended Kalman filtering algorithms for a generic Gough-Stewart platform assuming realistically available sensors such as length sensors, rate gyroscopes, and accelerometers. The basic idea is to extend existing methods for satellite attitude estimation. The nondeterministic methods are meant to be a practical alternative to existing iterative, deterministic methods for real-time estimation of platform configuration.


Sign in / Sign up

Export Citation Format

Share Document