On Optimizing the Visual Quality of HASM-Based Streaming—The Study the Sensitivity of Motion Estimation Techniques for Mesh-Based Codecs in Ultra High Definition Large Format Real-Time Video Coding

Author(s):  
Khaled Ezzat ◽  
Ahmed Tarek Mohamed ◽  
Ibrahim El-Shal ◽  
Wael Badawy
2019 ◽  
Vol 11 (8) ◽  
pp. 175 ◽  
Author(s):  
Buddhiprabha Erabadda ◽  
Thanuja Mallikarachchi ◽  
Chaminda Hewage ◽  
Anil Fernando

The exorbitant increase in the computational complexity of modern video coding standards, such as High Efficiency Video Coding (HEVC), is a compelling challenge for resource-constrained consumer electronic devices. For instance, the brute force evaluation of all possible combinations of available coding modes and quadtree-based coding structure in HEVC to determine the optimum set of coding parameters for a given content demand a substantial amount of computational and energy resources. Thus, the resource requirements for real time operation of HEVC has become a contributing factor towards the Quality of Experience (QoE) of the end users of emerging multimedia and future internet applications. In this context, this paper proposes a content-adaptive Coding Unit (CU) size selection algorithm for HEVC intra-prediction. The proposed algorithm builds content-specific weighted Support Vector Machine (SVM) models in real time during the encoding process, to provide an early estimate of CU size for a given content, avoiding the brute force evaluation of all possible coding mode combinations in HEVC. The experimental results demonstrate an average encoding time reduction of 52.38%, with an average Bjøntegaard Delta Bit Rate (BDBR) increase of 1.19% compared to the HM16.1 reference encoder. Furthermore, the perceptual visual quality assessments conducted through Video Quality Metric (VQM) show minimal visual quality impact on the reconstructed videos of the proposed algorithm compared to state-of-the-art approaches.


2010 ◽  
Vol 5 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Marcelo Porto ◽  
André Silva ◽  
Sergo Almeida ◽  
Eduardo Da Costa ◽  
Sergio Bampi

This paper presents real time HDTV (High Definition Television) architecture for Motion Estimation (ME) using efficient adder compressors. The architecture is based on the Quarter Sub-sampled Diamond Search algorithm (QSDS) with Dynamic Iteration Control (DIC) algorithm. The main characteristic of the proposed architecture is the large amount of Processing Units (PUs) that are used to calculate the SAD (Sum of Absolute Difference) metric. The internal structures of the PUs are composed by a large number of addition operations to calculate the SADs. In this paper, efficient 4-2 and 8-2 adder compressors are used in the PUs architecture to achieve the performance to work with HDTV (High Definition Television) videos in real time at 30 frames per second. These adder compressors enable the simultaneous addition of 4 and 8 operands respectively. The PUs, using adder compressors, were applied to the ME architecture. The implemented architecture was described in VHDL and synthesized to FPGA and, with Leonardo Spectrum tool, to the TSMC 0.18μm CMOS standard cell technology. Synthesis results indicate that the new QSDS-DIC architecture reach the best performance result and enable gains of 12% in terms of processing rate. The architecture can reach real time for full HDTV (1920x1080 pixels) in the worst case processing 65 frames per second, and it can process 269 HDTV frames per second in the average case.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 130 ◽  
Author(s):  
Dinh Trieu Duong ◽  
Huy Phi Cong ◽  
Xiem Hoang Van

Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a DVC codec. However, it is the fact that the quality of the decoded frames that is achieved in most recent DVC codecs is not consistent and it is varied with high quality fluctuation. In this paper, we propose a novel DVC solution named Joint exploration model based DVC (JEM-DVC) to solve the problem, which can provide not only higher performance as compared to the traditional DVC solutions, but also an effective scheme for the quality consistency control. We first employ several advanced techniques that are provided in the Joint exploration model (JEM) of the future video coding standard (FVC) in the proposed JEM-DVC solution to effectively improve the performance of JEM-DVC codec. Subsequently, for consistent quality control, we propose two novel methods, named key frame quantization (KF-Q) and Wyner-Zip frame quantization (WZF-Q), which determine the optimal values of the quantization parameter (QP) and quantization matrix (QM) applied for the key and WZ frame coding, respectively. The optimal values of QP and QM are adaptively controlled and updated for every key and WZ frames to guarantee the consistent video quality for the proposed codec unlike the conventional approaches. Our proposed JEM-DVC is the first DVC codec in literature that employs the JEM coding technique, and then all of the results that are presented in this paper are new. The experimental results show that the proposed JEM-DVC significantly outperforms the relevant DVC benchmarks, notably the DISCOVER DVC and the recent H.265/HEVC based DVC, in terms of both Peak signal-to-noise ratio (PSNR) performance and consistent visual quality.


2010 ◽  
Author(s):  
Huitao Gu ◽  
Shuwei Sun ◽  
Shuming Chen

2010 ◽  
Vol 34 (7-8) ◽  
pp. 316-328 ◽  
Author(s):  
Sergio Saponara ◽  
Maurizio Martina ◽  
Michele Casula ◽  
Luca Fanucci ◽  
Guido Masera

2014 ◽  
Vol 11 (4) ◽  
pp. 693-711 ◽  
Author(s):  
Fausto Ferreira ◽  
Gianmarco Veruggio ◽  
Massimo Caccia ◽  
Gabriele Bruzzone

Sign in / Sign up

Export Citation Format

Share Document