On the lossless property of a class of nonlinear quantum systems revisited

Author(s):  
Aline I. Maalouf ◽  
Ian R. Petersen
1992 ◽  
Vol 06 (11n12) ◽  
pp. 1905-1916 ◽  
Author(s):  
GERALD A. GOLDIN

Unitary representations of diffeomorphism groups predict some unusual possibilities in quantum theory, including non-standard statistics and certain nonlinear effects. Many of the fundamental physical properties of “anyons” were first derived from their study by R. Menikoff, D.H. Sharp, and the author. This paper surveys new applications in two other domains: first (with Menikoff and Sharp) some surprising conclusions about the nature of quantum vortex configurations in ideal, incompressible fluids; second (with H.-D. Doebner) a natural description of dissipative quantum mechanics by means of a nonlinear Schrödinger equation different from the sort usually studied. Our equation follows from including a diffusion current in the equation of continuity.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950340 ◽  
Author(s):  
S. Chiangga ◽  
S. Pitakwongsaporn ◽  
Till D. Frank

A simplified operator correspondence scheme is derived to address nonlinear quantum systems within the framework of the [Formula: see text]-representation. The simplified method is applied to a general nonlinear quantum oscillator model that has been used in the literature to describe nonlinear quantum optical and matter wave systems. The [Formula: see text]-representation evolution equation for the model is derived for arbitrary nonlinearity exponents. It is shown that in the high temperature case, the [Formula: see text]-representation is sufficient to describe the model and its associated systems such that there is no need to use alternative, mathematically more involved representations. Systems with quadratic and cubic nonlinearities are considered in more detail. Distributions for the energy levels and photon and particle numbers are obtained within the framework of the [Formula: see text]-representation. Moreover, the electrical field oscillation frequency dependency is studied numerically when interpreting the model as model for quantum optical nonlinear oscillators.


2010 ◽  
Vol 24 (16) ◽  
pp. 1799-1813
Author(s):  
XIAO-FENG PANG

The properties of microscopic particles are studied using the linear Schrödinger equation in quantum mechanics and nonlinear Schrödinger equation, respectively. The results obtained show that the microscopic particles have only a wave nature in quantum mechanics, but a wave-corpuscle duality in nonlinear systems depicted by the nonlinear Schrödinger equation, no matter the form of external potentials. Thus we know that the kinetic energy term in dynamic equations determines the wave feature of the particles; the nonlinear interaction term determines the corpuscle feature; their combination makes the microscopic particles have a wave-corpuscle duality. However the external potential term can change the phase and group velocities of motion, phase, amplitude, frequency and form of wave for the particles in both quantum mechanics and the nonlinear quantum systems, although it cannot change these fundamental natures of particles, no matter the forms. Meanwhile, we find that the changes of positions of the microscopic particles by increasing the time under action of an external potential satisfy the Newton-type equation of motion in nonlinear quantum systems. Thus the investigations make us not only see the limits and approximations of quantum mechanics but also know the necessity and importance of developing nonlinear quantum mechanics on the basis of the nonlinear Schrödinger equation.


1993 ◽  
Vol 70 (19) ◽  
pp. 2825-2828 ◽  
Author(s):  
Michael B. Mensky ◽  
Roberto Onofrio ◽  
Carlo Presilla

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 469
Author(s):  
Shahram Rezapour ◽  
Atika Imran ◽  
Azhar Hussain ◽  
Francisco Martínez ◽  
Sina Etemad ◽  
...  

A nonlinear quantum boundary value problem (q-FBVP) formulated in the sense of quantum Caputo derivative, with fractional q-integro-difference conditions along with its fractional quantum-difference inclusion q-BVP are investigated in this research. To prove the solutions’ existence for these quantum systems, we rely on the notions such as the condensing functions and approximate endpoint criterion (AEPC). Two numerical examples are provided to apply and validate our main results in this research work.


Sign in / Sign up

Export Citation Format

Share Document