A geometric characterisation of the persistence of excitation condition for sequences generated by discrete-time autonomous systems

Author(s):  
Alberto Padoan ◽  
Giordano Scarciotti ◽  
Alessandro Astolfi
2012 ◽  
Vol 22 (09) ◽  
pp. 1250232 ◽  
Author(s):  
SIMIN YU ◽  
GUANRONG CHEN

Based on the principle of chaotification for continuous-time autonomous systems, which relies on two basic properties of chaos, i.e. being globally bounded with necessary positive-zero-negative Lyapunov exponents, this paper derives a feasible and unified chaotification method for designing a general chaotic continuous-time autonomous nonlinear system. For a system consisting of a linear and a nonlinear subsystems, chaotification is achieved using separation of state variables, which decomposes the system into two open-loop subsystems interacting through mutual feedback resulting in an overall closed-loop nonlinear feedback system. Under the condition that the nonlinear feedback control output is uniformly bounded where the nonlinear function is of bounded-input/bounded-output, it is proved that the resulting system is chaotic in the sense of being globally bounded with a required placement of Lyapunov exponents. Several numerical examples are given to verify the effectiveness of the theoretical design. Since linear systems are special cases of nonlinear systems, the new method is also applicable to linear systems in general.


Sign in / Sign up

Export Citation Format

Share Document