scholarly journals Active control of the axisymmetric vibration modes of a tom-tom drum

Author(s):  
Marc Wijnand ◽  
Brigitte d'Andrea-Novel ◽  
Benoit Fabre ◽  
Thomas Helie ◽  
Lionel Rosier ◽  
...  
Author(s):  
Ching-I Chen

Abstract This study focused on the application of active vibration control strategies for flexible moving structures which degrade into transient dynamic vibration problem. These control strategies are based primarily on modal control methods in which the flexible moving structures are controlled by reducing their dominant vibration modes. This work numerically investigated active control of the elastodynamic response of a four-bar mechanical system, using a piezoelectric actuator. A controller based on the modified independent modal space control theory was also utilized. This control theory produced overall excellent performance in terms of achieving the desired closed-loop structural damping. The merits of this technique include its ability to manage the spill-over effect, i.e. eliminate the magnitude of vibrations associated with uncontrolled modes, using only a few selected modes for control. This control was accomplished using a time sharing technique, which reduces the number of piezoelectric actuators required to control a large number of vibration modes. Furthermore, this algorithm implements a procedure for determining the optimal locations for the piezoelectric actuators. The dynamics of a steel four-bar linkage was selected with a flexible coupler separated by six elements and one piezoelectric actuator was used in the numerical simulation. The optimal actuator position was located at the third element from the right to the left. Results in this study demonstrated that a highly desired the structural vibration damping could be achieved. This control technique can be applied to transient dynamic systems.


Author(s):  
Muhammad Sannah ◽  
Ahmad Smaili

Abstract This paper presents an analytical investigation on active control of the elastodynamic response of a four-bar (4R) mechanism system using “smart” materials featuring piezoelectric sensor/actuator (S/A) pairs and multivariable optimal control. The 4R mechanism consists of a flexible coupler link, relatively flexible follower link, and a relatively rigid crank. Two thin plate-type piezoceramic S/A pairs are bonded to the flanks of the coupler link at high strain locations corresponding to the first and second vibration modes. Based on the optimal multivariable control theory, a controller which consists of a linear quadratic regulator (LQR) and a Luenberger observer as a state estimator is designed and implemented. As the mechanism changes configuration, its modal characteristics are recalculated, and the controller is redesigned. The dynamic model used for the controller design includes the second and fourth vibration modes of the mechanism system. These modes are predominated by the first two bending modes of the mechanism’s coupler link. The results showed that while the proposed active control strategy is successful in reducing the amplitudes of vibrations about the quasistatic response, it has no effect on the quasistatic deflections due to steady state loading.


2012 ◽  
Vol 2012 (0) ◽  
pp. _522-1_-_522-8_
Author(s):  
Syunichi KAMURA ◽  
Yosuke KOBA ◽  
Satoshi ISHIKAWA ◽  
Shinya KIJIMOTO

1989 ◽  
Vol 28 (S1) ◽  
pp. 161 ◽  
Author(s):  
Yoshiro Tomikawa ◽  
Takehiro Takanon ◽  
Hiroshi Hirata ◽  
Toshiharu Ogasawara

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Mauro Caresta ◽  
Nicole Kessissoglou

This paper investigates the use of inertial actuators to reduce the sound radiated by a submarine hull under excitation from the propeller. The axial forces from the propeller are tonal at the blade passing frequency. The hull is modeled as a fluid-loaded cylindrical shell with ring stiffeners and equally spaced bulkheads. The cylinder is closed at each end by circular plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation connected to the propeller shaft. Inertial actuators are used as the structural control inputs. The actuators are arranged in circumferential arrays and attached to the internal end plates of the hull. Two active control techniques corresponding to active vibration control and discrete structural acoustic sensing are implemented to attenuate the structural and acoustic responses of the submarine. In the latter technique, error information on the radiated sound fields is provided by a discrete structural acoustic sensor. An acoustic transfer function is defined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to provide control forces with a magnitude large enough to reduce the sound due to hull vibration.


Sign in / Sign up

Export Citation Format

Share Document