An evolution strategy for multiobjective optimization

Author(s):  
L. Costa ◽  
P. Oliveira
Author(s):  
Tse guan Tan ◽  
Jason Teo ◽  
On Chin Kim

AbstrakKini, semakin ramai penyelidik telah menunjukkan minat mengkaji permainan Kecerdasan Buatan (KB).Permainan seumpama ini menyediakan tapak uji yang sangat berguna dan baik untuk mengkaji asasdan teknik-teknik KB. Teknik KB, seperti pembelajaran, pencarian dan perencanaan digunakan untukmenghasilkan agen maya yang mampu berfikir dan bertindak sewajarnya dalam persekitaran permainanyang kompleks dan dinamik. Dalam kajian ini, satu set pengawal permainan autonomi untuk pasukan hantudalam permainan Ms. Pac-man yang dicipta dengan menggunakan penghibridan Evolusi PengoptimumanMultiobjektif (EPM) dan ko-evolusi persaingan untuk menyelesaikan masalah pengoptimuman dua objektifiaitu meminimumkan mata dalam permainan dan bilangan neuron tersembunyi di dalam rangkaianneural buatan secara serentak. Arkib Pareto Evolusi Strategi (APES) digunakan, teknik pengoptimumanmultiobjektif ini telah dibuktikan secara saintifik antara yang efektif di dalam pelbagai aplikasi. Secarakeseluruhannya, keputusan eksperimen menunjukkan bahawa teknik pengoptimuman multiobjektif bolehmendapat manfaat daripada aplikasi ko-evolusi persaingan Abstract Recently, researchers have shown an increased interest in game Artificial Intelligence (AI). Gamesprovide a very useful and excellent testbed for fundamental AI research. The AI techniques, such aslearning, searching and planning are applied to generate the virtual creatures that are able to think andact appropriately in the complex and dynamic game environments. In this study, a set of autonomousgame controllers for the ghost team in the Ms. Pac-man game are created by using the hybridizationof Evolutionary Multiobjective Optimization (EMO) and competitive coevolution to solve the bi-objectiveoptimization problem of minimizing the game's score by eating Ms. Pac-man agent and the number ofhidden neurons in neural network simultaneously. The Pareto Archived Evolution Strategy (PAES) is usedthat has been proved to be an effective and efficient multiobjective optimization technique in variousapplications. Overall, the results show that multiobjective optimizer can benefit from the application ofcompetitive coevolutionary


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tse Guan Tan ◽  
Jason Teo ◽  
Kim On Chin

The objective of this study is to focus on the automatic generation of game artificial intelligence (AI) controllers for Ms. Pac-Man agent by using artificial neural network (ANN) and multiobjective artificial evolution. The Pareto Archived Evolution Strategy (PAES) is used to generate a Pareto optimal set of ANNs that optimize the conflicting objectives of maximizing Ms. Pac-Man scores (screen-capture mode) and minimizing neural network complexity. This proposed algorithm is called Pareto Archived Evolution Strategy Neural Network or PAESNet. Three different architectures of PAESNet were investigated, namely, PAESNet with fixed number of hidden neurons (PAESNet_F), PAESNet with varied number of hidden neurons (PAESNet_V), and the PAESNet with multiobjective techniques (PAESNet_M). A comparison between the single- versus multiobjective optimization is conducted in both training and testing processes. In general, therefore, it seems that PAESNet_F yielded better results in training phase. But the PAESNet_M successfully reduces the runtime operation and complexity of ANN by minimizing the number of hidden neurons needed in hidden layer and also it provides better generalization capability for controlling the game agent in a nondeterministic and dynamic environment.


2003 ◽  
Vol 11 (4) ◽  
pp. 417-438 ◽  
Author(s):  
Lino Costa ◽  
Pedro Oliveira

Almost all approaches to multiobjective optimization are based on Genetic Algorithms (GAs), and implementations based on Evolution Strategies (ESs) are very rare. Thus, it is crucial to investigate how ESs can be extended to multiobjective optimization, since they have, in the past, proven to be powerful single objective optimizers. In this paper, we present a new approach to multiobjective optimization, based on ESs. We call this approach the Multiobjective Elitist Evolution Strategy (MEES) as it incorporates several mechanisms, like elitism, that improve its performance. When compared with other algorithms, MEES shows very promising results in terms of performance.


2000 ◽  
Vol 8 (2) ◽  
pp. 149-172 ◽  
Author(s):  
Joshua D. Knowles ◽  
David W. Corne

We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1+1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. (1+1)-PAES is intended to be a baseline approach against which more involved methods may be compared. It may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods. We introduce (1+λ) and (μ+λ) variants of PAES as extensions to the basic algorithm. Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions. This allows standard statistical analysis to be carried out for comparative purposes. Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks.


Sign in / Sign up

Export Citation Format

Share Document