Swarm intelligence to coordinate decentralized learning automata in identical payoff games

Author(s):  
Jie Li ◽  
JunQi Zhang ◽  
LinWei Xu ◽  
ChangJun Jiang
Author(s):  
Ahmed Abouzeid ◽  
Ole-Christoffer Granmo ◽  
Christian Webersik ◽  
Morten Goodwin

AbstractMitigating misinformation on social media is an unresolved challenge, particularly because of the complexity of information dissemination. To this end, Multivariate Hawkes Processes (MHP) have become a fundamental tool because they model social network dynamics, which facilitates execution and evaluation of mitigation policies. In this paper, we propose a novel light-weight intervention-based misinformation mitigation framework using decentralized Learning Automata (LA) to control the MHP. Each automaton is associated with a single user and learns to what degree that user should be involved in the mitigation strategy by interacting with a corresponding MHP, and performing a joint random walk over the state space. We use three Twitter datasets to evaluate our approach, one of them being a new COVID-19 dataset provided in this paper. Our approach shows fast convergence and increased valid information exposure. These results persisted independently of network structure, including networks with central nodes, where the latter could be the root of misinformation. Further, the LA obtained these results in a decentralized manner, facilitating distributed deployment in real-life scenarios.


2018 ◽  
Vol 35 (6) ◽  
pp. e12310 ◽  
Author(s):  
Babak Anari ◽  
Javad Akbari Torkestani ◽  
Amir Masoud Rahmani

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document