Performance Analysis of TBC-ACO Routing Protocol with Existing Routing Protocols of Wireless Sensor Networks

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.

Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Author(s):  
Anand Nayyar ◽  
Rajeshwar Singh

Wireless Sensor Networks (WSNs) have always been a hot area of researchers for finding more solutions towards making WSN network more energy efficient and reliable. Energy efficient routing is always a key challenging task to enhance the network lifetime and balance energy among the sensor nodes. Various solutions have been proposed in terms of energy efficient routing via protocol development, various techniques have also been incorporated like Genetic Algorithm, Swarm Intelligence etc. The main aim of this research paper to study all the routing protocols which are energy efficient and are based on Ant Colony Optimization (ACO). This paper also highlights the pros and cons of each of routing protocol which has been developed on lines of Energy Efficiency and has also been compared among one another to find which protocol outwits one another. Further, we conclude that Swarm Intelligence being a novel and bio-inspired field has contributed as well as contributing much in the area of improving routing issues of sensor networks.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4579 ◽  
Author(s):  
Yang Liu ◽  
Qiong Wu ◽  
Ting Zhao ◽  
Yong Tie ◽  
Fengshan Bai ◽  
...  

Cluster-based hierarchical routing protocols play an essential role in decreasing the energy consumption of wireless sensor networks (WSNs). A low-energy adaptive clustering hierarchy (LEACH) has been proposed as an application-specific protocol architecture for WSNs. However, without considering the distribution of the cluster heads (CHs) in the rotation basis, the LEACH protocol will increase the energy consumption of the network. To improve the energy efficiency of the WSN, we propose a novel modified routing protocol in this paper. The newly proposed improved energy-efficient LEACH (IEE-LEACH) protocol considers the residual node energy and the average energy of the networks. To achieve satisfactory performance in terms of reducing the sensor energy consumption, the proposed IEE-LEACH accounts for the numbers of the optimal CHs and prohibits the nodes that are closer to the base station (BS) to join in the cluster formation. Furthermore, the proposed IEE-LEACH uses a new threshold for electing CHs among the sensor nodes, and employs single hop, multi-hop, and hybrid communications to further improve the energy efficiency of the networks. The simulation results demonstrate that, compared with some existing routing protocols, the proposed protocol substantially reduces the energy consumption of WSNs.


Author(s):  
Anand Nayyar ◽  
Rajeshwar Singh

Wireless Sensor Networks (WSNs) have always been a hot area of researchers for finding more solutions towards making WSN network more energy efficient and reliable. Energy efficient routing is always a key challenging task to enhance the network lifetime and balance energy among the sensor nodes. Various solutions have been proposed in terms of energy efficient routing via protocol development, various techniques have also been incorporated like Genetic Algorithm, Swarm Intelligence etc. The main aim of this research paper to study all the routing protocols which are energy efficient and are based on Ant Colony Optimization (ACO). This paper also highlights the pros and cons of each of routing protocol which has been developed on lines of Energy Efficiency and has also been compared among one another to find which protocol outwits one another. Further, we conclude that Swarm Intelligence being a novel and bio-inspired field has contributed as well as contributing much in the area of improving routing issues of sensor networks.


2016 ◽  
Vol 15 (4) ◽  
pp. 6654-6658
Author(s):  
Irfan Shaqiri ◽  
Aristotel Tentov

In this paper we give an overview of some routing protocols which can improve the efficiency and scalability of wireless sensor networks. The Wireless Sensor Network (WSN) is a network consisting of ten to thousand small nodes with sensing, computing and wireless communication capabilities. WSN are generally used to monitor activities and report events, such as pollution parameters, healthcare issues, fire info etc. in a specific area or environment. It routs data back to the Base Station (BS). Data transmission is usually a multi-hop from node to node towards the BS. This type of networks is limited in power, computational and communication bandwidth. The main goal of all researchers is to find out the energy efficient routing protocol which will improve considerably networks resources in term of prolonging lifetime of sensor nodes. Also we highlight the various routing protocol with advantages and limitations as well. 


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


2018 ◽  
Vol 7 (4.12) ◽  
pp. 20
Author(s):  
Navneet Kaur ◽  
Dr. Sahil Verma ◽  
Dr. Kavita

Wireless Sensor Networks(WSNs) comprise sensor nodes which find applications in a wide variety of fields such as medical, wildlife, security, environment, industry. A network communication is initialized and accomplished with the aid of routing protocols. A routing protocol is a set of rules which govern the routing phenomenon. WSNs protocols for the purpose of routing have been the ubiquitous option of the researchers in the recent years due to their exorbitant scope of improvement. The objective of a routing protocol is to inquest for a relevant route amidst sender and receiver to accomplish successful transmission at the destination .Dissipation of energy and lengthening the duration of the network have always been one of the major points of research gaps. As the nodes in WSNs in are battery operated, so they can only use restricted energy to proceed with the communication and transmission operation. To cope up with this, a number of researchers have come up with developments in the field of energy efficacy and optimizations in WSNs routing protocols. A reify summarization of some protocols for routing purposes has been manifested in this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Sign in / Sign up

Export Citation Format

Share Document