Research On High-speed Optical Transmission Technology Based On Optical Frequency Comb

Author(s):  
MingZhi Tang
Author(s):  
Shujie Pan ◽  
Hongguang Zhang ◽  
Zizhuo Liu ◽  
Mengya Liao ◽  
Mingchu Tang ◽  
...  

Abstract Semiconductor mode-locked lasers (MLLs) with extremely high repetition rates are promising optical frequency comb (OFC) sources for their usage as compact, high-efficiency, and low-cost light sources in high-speed dense wavelength-division multiplexing (DWDM) transmissions. The fully exploited conventional C- and L- bands require the research on O-band to fulfil the transmission capacity of the current photonic networks. In this work, we present a passive two-section InAs/InGaAs quantum-dot (QD) MLL-based OFC with a fundamental repetition rate of ~100 GHz operating at O-band wavelength range. The specially designed device favours the generation of nearly Fourier-transform-limited pulses in the entire test range by only pumping the gain section while with the absorber unbiased. The typical integrated relative intensity noise (RIN) of the whole spectrum and a single tone are -152 dB/Hz and -137 dB/Hz in the range of 100 MHz to 10 GHz, respectively. Back-to-back (B2B) data transmissions for 7 selected tones have been realised by employing a 64 Gbaud four-level pulse amplitude modulation format (PAM-4). The demonstrated performance shows the feasibility of the InAs QD MLLs as a simple structure, easy operation, and low power consumption OFC sources for high-speed fibre-optic communications.


2017 ◽  
Vol 9 (3) ◽  
pp. 1-8 ◽  
Author(s):  
M. Deseada Gutierrez Pascual ◽  
Vidak Vujicic ◽  
Jules Braddell ◽  
Frank Smyth ◽  
Prince Anandarajah ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Prajwal D Lakshmijayasimha ◽  
Syed Tajammul Ahmad ◽  
Eamonn Martin ◽  
Anandarajah M Prince ◽  
Aleksandra Maria Kaszubowska-Anandarajah

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mamoru Endo ◽  
Shota Kimura ◽  
Shuntaro Tani ◽  
Yohei Kobayashi

AbstractMulti-gigahertz mechanical vibrations that stem from interactions between light fields and matter—known as acoustic phonons—have long been a subject of research. In recent years, specially designed functional devices have been developed to enhance the strength of the light-matter interactions because excitation of acoustic phonons using a continuous-wave laser alone is insufficient. However, the strength of the interaction cannot be controlled appropriately or instantly using these structurally-dependent enhancements. Here we show a technique to control the effective interaction strength that does not operate via the material structure in the spatial domain; instead, the method operates through the structure of the light in the time domain. The effective excitation and coherent control of acoustic phonons in a single-mode fiber using an optical frequency comb that is performed by tailoring the optical pulse train. This work represents an important step towards comb-matter interactions.


Sign in / Sign up

Export Citation Format

Share Document