Active Voltage-type Arc Suppression Device for Single-Line-to-Ground Fault in Distribution Networks with Consideration of Line Impedance

Author(s):  
Haihang Ma ◽  
Qikai Li ◽  
Bishuang Fan ◽  
Wen Wang
2019 ◽  
Vol 124 ◽  
pp. 05003
Author(s):  
Sergey Sidorov ◽  
Valery Sushkov ◽  
Ilya Sukhachev

One of the main causes of the high accidents and outages rate in 6(10)-kV distributed power supply systems of oil well clusters is damage to overhead power lines due to single line-to-ground faults. Widely conducted studies to locate a single line-to-ground fault have established a correlation between the accuracy of determination and a large number of changing factors, such as operating mode parameters, overhead power line parameters, type of damage, transition resistance, soil resistance, and others. Rationing of technical means for determining the location of a single line-to-ground fault by instrumental errors without taking into account the methodological component translates into the error in locating the damage up to 30%. Thus, relevant research is aimed at determining the primary parameters of power lines and minimizing the methodological error in determining the location of damaged power lines, considering climatic factors. The study takes into account the basic physical processes of propagation of an electromagnetic wave in the power line. The main principles of the theory of electrical circuits and the electromagnetic field and MATLAB Simulink package algorithms are used. As part of the study, a technique has been developed that allows determining the distance from 6(10)/0.4-kV substations to a single line-to-ground fault location in distribution networks of oil well clusters taking into account climatic factors. A simulation model of a 10-kV distribution network supplying oil well clusters was developed in MATLAB Simulink, taking into account the dependence of the primary power line parameters on climatic factors and soil resistivity.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yougen Chen ◽  
Junbo Yin ◽  
Zhiyong Li ◽  
Renyong Wei

Sign in / Sign up

Export Citation Format

Share Document