Instantaneous Phase-Locked Loop for performance improvement of power system with STATCOM under single-line to ground fault

Author(s):  
Zhengping Xi ◽  
Babak Parkhideh ◽  
Subhashish Bhattacharya
Author(s):  
Harshal Vilas Patil

Now-a-days the demand of electricity or power areincreases day by day this results to transmits more power byIncreasing the transmission line capacity from one place to theother place. But during the transmission some faults areoccurred in the system, such as L-L fault (line to line), 1L-Gfault (single line to ground) and 2L-G fault (double line toground). These faults affect the power system equipmentswhich are connected to it. The main aim of this paper is tostudy or analysis of faults and also identifies the effect of thefault in transmission line along with bus system which isconnected to transmission line. Mainly the major faults in longtransmission lines is (L-G) single line to ground fault which areharmful to the electrical equipment. A proposed model intransmission line is simulated in MATLAB software to analysisand identified the faults. Fault block was taken from the sim-power system block library. The whole modeling andsimulation of different operating and different conditions offault on transmission line, their faults are L-G fault, 2L-Gfault, 3L-G fault and three line short circuit of the proposedwork is presented in this paper.


Author(s):  
Boniface Onyemaechi Anyaka ◽  
Innocent Onyebuchi Ozioko

Fault analysis is the process of determining the magnitude of fault voltage and current during the occurrence of different types of fault in electrical power system. Transmission line fault analysis is usually done for both symmetrical and unsymmetrical faults. Symmetrical faults are called three-phase balance fault while unsymmetrical faults include: single line-to-ground, line-to-line, and double line-to-ground faults. In this research, bus impedance matrix method for fault analysis is presented. Bus impedance matrix approach has several advantages over Thevenin’s equivalent method and other conventional approaches. This is because the off-diagonal elements represent the transfer impedance of the power system network and helps in calculating the branch fault currents during a fault. Analytical and simulation approaches on a single line-to-ground fault on 3-bus power system network under bolted fault condition were used for the study. Both methods were compared and result showed negligible deviation of 0.02% on the average. The fault currents under bolted condition for the single line-to-ground fault were found to be 4. 7244p.u while the bus voltage is 0. 4095p.u for buses 1 and 2 respectively and 0. 00p.u for bus 3 since the fault occurred at this bus. Therefore, there is no need of burdensomely connecting the entire three sequence network during fault analysis in electrical power system.


2013 ◽  
Vol 10 (3) ◽  
pp. 445-457
Author(s):  
Ali Behniafar ◽  
Ahmad Darabi ◽  
Mahdi Banejad ◽  
Mohammadreza Baghayipour

The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP) neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yougen Chen ◽  
Junbo Yin ◽  
Zhiyong Li ◽  
Renyong Wei

Sign in / Sign up

Export Citation Format

Share Document