Stabilization of the Inertia Wheel Pendulum by Time-Delayed State Feedback

Author(s):  
Ye Huawen ◽  
Peng Sendi ◽  
Gui Weihua ◽  
Yang Chunhua
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ambrus Zelei ◽  
John Milton ◽  
Gabor Stepan ◽  
Tamas Insperger

AbstractPostural sway is a result of a complex action–reaction feedback mechanism generated by the interplay between the environment, the sensory perception, the neural system and the musculation. Postural oscillations are complex, possibly even chaotic. Therefore fitting deterministic models on measured time signals is ambiguous. Here we analyse the response to large enough perturbations during quiet standing such that the resulting responses can clearly be distinguished from the local postural sway. Measurements show that typical responses very closely resemble those of a critically damped oscillator. The recovery dynamics are modelled by an inverted pendulum subject to delayed state feedback and is described in the space of the control parameters. We hypothesize that the control gains are tuned such that (H1) the response is at the border of oscillatory and nonoscillatory motion similarly to the critically damped oscillator; (H2) the response is the fastest possible; (H3) the response is a result of a combined optimization of fast response and robustness to sensory perturbations. Parameter fitting shows that H1 and H3 are accepted while H2 is rejected. Thus, the responses of human postural balance to “large” perturbations matches a delayed feedback mechanism that is optimized for a combination of performance and robustness.


Sign in / Sign up

Export Citation Format

Share Document