delayed state feedback
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ambrus Zelei ◽  
John Milton ◽  
Gabor Stepan ◽  
Tamas Insperger

AbstractPostural sway is a result of a complex action–reaction feedback mechanism generated by the interplay between the environment, the sensory perception, the neural system and the musculation. Postural oscillations are complex, possibly even chaotic. Therefore fitting deterministic models on measured time signals is ambiguous. Here we analyse the response to large enough perturbations during quiet standing such that the resulting responses can clearly be distinguished from the local postural sway. Measurements show that typical responses very closely resemble those of a critically damped oscillator. The recovery dynamics are modelled by an inverted pendulum subject to delayed state feedback and is described in the space of the control parameters. We hypothesize that the control gains are tuned such that (H1) the response is at the border of oscillatory and nonoscillatory motion similarly to the critically damped oscillator; (H2) the response is the fastest possible; (H3) the response is a result of a combined optimization of fast response and robustness to sensory perturbations. Parameter fitting shows that H1 and H3 are accepted while H2 is rejected. Thus, the responses of human postural balance to “large” perturbations matches a delayed feedback mechanism that is optimized for a combination of performance and robustness.


2021 ◽  
Author(s):  
Ambrus Zelei ◽  
John Milton ◽  
Gabor Stepan ◽  
Tamas Insperger

Abstract Postural sway is a result of a complex action-reaction feedback mechanism generated by the interplay between the environment, the sensory perception, the neural system and the musculation. Postural oscillations are complex, possibly even chaotic. Therefore fitting deterministic models on measured time signals is ambiguous. Here we analyse the response to large enough perturbations during quiet standing such that the resulting responses can clearly be distinguished from the local postural sway. Measurements show that typical responses very closely resemble those of a critically damped oscillator. The recovery dynamics is modelled by an inverted pendulum subject to delayed state feedback and is described in the space of the control parameters. We hypothesize that the control gains are tuned such that (H1) the response is at the border of oscillatory and nonoscillatory motion; (H2) the response is the fastest possible; (H3) the response is a result of a combined optimization of fast response and robustness to sensory perturbations. Parameter fitting shows that H1 and H3 are accepted while H2 is rejected. Thus, the responses of human postural balance to “large” perturbations matches a delayed feedback mechanism that is optimized for a combination of performance and robustness.


2020 ◽  
pp. 107754632092690
Author(s):  
Csenge A Molnar ◽  
Tamas Balogh ◽  
Islam Boussaada ◽  
Tamas Insperger

Single and double inverted pendulum systems subjected to delayed state feedback are analyzed in terms of stabilizability. The maximum (critical) delay that allows a stable closed-loop system is determined via the multiplicity-induced-dominancy property of the characteristic roots, that is the dominant (rightmost) roots are associated with higher multiplicity under certain conditions of the system parameters. Other methods such as tracking the changes of the D-curves with increasing delay and the Walton–Marshall method are also demonstrated for the example of the single pendulum. For the double inverted pendulum subjected to full state feedback, the number of control gains is four, and application of numerical methods requires therefore high computational effort (i.e. optimization in a four-dimensional space). It is shown that, with the multiplicity-induced-dominancy–based approach, the critical delay and the associated control gains can be determined directly using the characteristic equation and its derivatives.


Sign in / Sign up

Export Citation Format

Share Document