Orthogonal matching pursuit & compressive sampling matching pursuit for Doppler ultrasound signal reconstruction

Author(s):  
Sulieman M. S. Zobly ◽  
Yasser M. Kadah
2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Yijiu Zhao ◽  
Xiaoyan Zhuang ◽  
Zhijian Dai ◽  
Houjun Wang

This paper suggests an upside-down tree-based orthogonal matching pursuit (UDT-OMP) compressive sampling signal reconstruction method in wavelet domain. An upside-down tree for the wavelet coefficients of signal is constructed, and an improved version of orthogonal matching pursuit is presented. The proposed algorithm reconstructs compressive sampling signal by exploiting the upside-down tree structure of the wavelet coefficients of signal besides its sparsity in wavelet basis. Compared with conventional greedy pursuit algorithms: orthogonal matching pursuit (OMP) and tree-based orthogonal matching pursuit (TOMP), signal-to-noise ratio (SNR) using UDT-OMP is significantly improved.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 231 ◽  
Author(s):  
Hanfei Zhang ◽  
Shungen Xiao ◽  
Ping Zhou

The signal reconstruction quality has become a critical factor in compressed sensing at present. This paper proposes a matching pursuit algorithm for backtracking regularization based on energy sorting. This algorithm uses energy sorting for secondary atom screening to delete individual wrong atoms through the regularized orthogonal matching pursuit (ROMP) algorithm backtracking. The support set is continuously updated and expanded during each iteration. While the signal energy distribution is not uniform, or the energy distribution is in an extreme state, the reconstructive performance of the ROMP algorithm becomes unstable if the maximum energy is still taken as the selection criterion. The proposed method for the regularized orthogonal matching pursuit algorithm can be adopted to improve those drawbacks in signal reconstruction due to its high reconstruction efficiency. The experimental results show that the algorithm has a proper reconstruction.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yigang Cen ◽  
Fangfei Wang ◽  
Ruizhen Zhao ◽  
Lihong Cui ◽  
Lihui Cen ◽  
...  

Compressed sensing (CS) is a theory which exploits the sparsity characteristic of the original signal in signal sampling and coding. By solving an optimization problem, the original sparse signal can be reconstructed accurately. In this paper, a new Tree-based Backtracking Orthogonal Matching Pursuit (TBOMP) algorithm is presented with the idea of the tree model in wavelet domain. The algorithm can convert the wavelet tree structure to the corresponding relations of candidate atoms without any prior information of signal sparsity. Thus, the atom selection process will be more structural and the search space can be narrowed. Moreover, according to the backtracking process, the previous chosen atoms’ reliability can be detected and the unreliable atoms can be deleted at each iteration, which leads to an accurate reconstruction of the signal ultimately. Compared with other compressed sensing algorithms, simulation results show the proposed algorithm’s superior performance to that of several other OMP-type algorithms.


Sign in / Sign up

Export Citation Format

Share Document