The Penetration Testing Framework for Large-Scale Network Based on Network Fingerprint

Author(s):  
Pengfei Shi ◽  
Futong Qin ◽  
Ruosi Cheng ◽  
Kunsong Zhu
2019 ◽  
Vol 214 ◽  
pp. 08005
Author(s):  
Stefan Nicolae Stancu ◽  
Adam Lukasz Krajewski ◽  
Mattia Cadeddu ◽  
Marta Antosik ◽  
Bernd Panzer-Steinde

Network performance is key to the correct operation of any modern data centre infrastructure or data acquisition (DAQ) system. Hence, it is crucial to ensure the devices employed in the network are carefully selected to meet the required needs. Specialized commercial testers implement standardized tests [1, 2], which benchmark the performance of network devices under reproducible, yet artificial conditions. Netbench is a network-testing framework, relying on commodity servers and NICs, that enables the evaluation of network devices performance for handling traffic-patterns that closely resemble real-life usage, at a reasonably affordable price. We will present the architecture of the Netbench framework, its capabilities and how they complement the use of specialized commercial testers (e.g. competing TCP flows that create temporary congestion provide a good benchmark of buffering capabilities in real-life scenarios). Last but not least, we will describe how CERN used Netbench for performing large scale tests with partial-mesh and full-mesh TCP flows [3], an essential validation point during its most recent high-end routers call for tender.


MIS Quarterly ◽  
2016 ◽  
Vol 40 (4) ◽  
pp. 849-868 ◽  
Author(s):  
Kunpeng Zhang ◽  
◽  
Siddhartha Bhattacharyya ◽  
Sudha Ram ◽  
◽  
...  

2014 ◽  
Vol 26 (7) ◽  
pp. 1377-1389 ◽  
Author(s):  
Bo-Cheng Kuo ◽  
Mark G. Stokes ◽  
Alexandra M. Murray ◽  
Anna Christina Nobre

In the current study, we tested whether representations in visual STM (VSTM) can be biased via top–down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1–V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top–down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.


Sign in / Sign up

Export Citation Format

Share Document