Multi-Objective Optimization of Double-Folded Yagi Antenna Using Genetic Algorithms

Author(s):  
Bin Yuan ◽  
Xiu Wang
Author(s):  
N. Chakraborti

An informal analysis is provided for the basic concepts associated with multi-objective optimization and the notion of Pareto-optimality, particularly in the context of genetic algorithms. A number of evolutionary algorithms developed for this purpose are also briefly introduced, and finally, a number of paradigm examples are presented from the materials and manufacturing sectors, where multi-objective genetic algorithms have been successfully utilized in the recent past.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 4913-4926 ◽  
Author(s):  
Yuchao Chang ◽  
Xiaobing Yuan ◽  
Baoqing LI ◽  
Dusit Niyato ◽  
Naofal Al-Dhahir

2011 ◽  
Vol 90-93 ◽  
pp. 2734-2739
Author(s):  
Ruan Yun ◽  
Cui Song Yu

Non-dominated sorting genetic algorithms II (NSGAII) has been widely used for multi- objective optimizations. To overcome its premature shortcoming, an improved NSGAII with a new distribution was proposed in this paper. Comparative to NSGAII, improved NSGAII uses an elitist control strategy to protect its lateral diversity among current non-dominated fronts. To implement elitist control strategy, a new distribution (called dogmatic distribution) was proposed. For ordinary multi-objective optimization problem (MOP), an ordinary exploration ability of improved NSGAII should be maintained by using a larger shape parameter r; while for larger-scale complex MOP, a larger exploration ability of improved NSGAII should be maintained by using a less shape parameter r. The application of improved NSGAII in multi-objective operation of Wohu reservoir shows that improved NSGAII has advantages over NSGAII to get better Pareto front especially for large-scale complex multi-objective reservoir operation problems.


Sign in / Sign up

Export Citation Format

Share Document