Lucid-GAN: An Adversarial Network for Enhanced Image Inpainting

Author(s):  
Utkarsh Maheshwari ◽  
Venkata Pavan Kumar Turlapati ◽  
Usha Kiruthika
Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1370 ◽  
Author(s):  
Tingzhu Sun ◽  
Weidong Fang ◽  
Wei Chen ◽  
Yanxin Yao ◽  
Fangming Bi ◽  
...  

Although image inpainting based on the generated adversarial network (GAN) has made great breakthroughs in accuracy and speed in recent years, they can only process low-resolution images because of memory limitations and difficulty in training. For high-resolution images, the inpainted regions become blurred and the unpleasant boundaries become visible. Based on the current advanced image generation network, we proposed a novel high-resolution image inpainting method based on multi-scale neural network. This method is a two-stage network including content reconstruction and texture detail restoration. After holding the visually believable fuzzy texture, we further restore the finer details to produce a smoother, clearer, and more coherent inpainting result. Then we propose a special application scene of image inpainting, that is, to delete the redundant pedestrians in the image and ensure the reality of background restoration. It involves pedestrian detection, identifying redundant pedestrians and filling in them with the seemingly correct content. To improve the accuracy of image inpainting in the application scene, we proposed a new mask dataset, which collected the characters in COCO dataset as a mask. Finally, we evaluated our method on COCO and VOC dataset. the experimental results show that our method can produce clearer and more coherent inpainting results, especially for high-resolution images, and the proposed mask dataset can produce better inpainting results in the special application scene.


2020 ◽  
Author(s):  
Mingwu Jin ◽  
Yang Pan ◽  
Shunrong Zhang ◽  
Yue Deng

<p>Because of the limited coverage of receiver stations, current measurements of Total Electron Content (TEC) by ground-based GNSS receivers are not complete with large portions of data gaps. The processing to obtain complete TEC maps for space science research is time consuming and needs the collaboration of five International GNSS Service (IGS) Ionosphere Associate Analysis Centers (IAACs) to use different data processing and filling algorithms and to consolidate their results into final IGS completed TEC maps. In this work, we developed a Deep Convolutional Generative Adversarial Network (DCGAN) and Poisson blending model (DCGAN-PB) to learn IGS completion process for automatic completion of TEC maps. Using 10-fold cross validation of 20-year IGS TEC data, DCGAN-PB achieves the average root mean squared error (RMSE) about 4 absolute TEC units (TECu) of the high solar activity years and around 2 TECu for low solar activity years, which is about 50% reduction of RMSE for recovered TEC values compared to two conventional single-image inpainting methods. The developed DCGAN-PB model can lead to an efficient automatic completion tool for TEC maps.</p>


2020 ◽  
Vol 38 (6) ◽  
pp. 2558-2578
Author(s):  
Honggeun Jo ◽  
Javier E Santos ◽  
Michael J Pyrcz

Rule-based reservoir modeling methods integrate geological depositional process concepts to generate reservoir models that capture realistic geologic features for improved subsurface predictions and uncertainty models to support development decision making. However, the robust and direct conditioning of these models to subsurface data, such as well logs, core descriptions, and seismic inversions and interpretations, remains as an obstacle for the broad application as a standard subsurface modeling technology. We implement a machine learning-based method for fast and flexible data conditioning of rule-based models. This study builds on a rule-based modeling method for deep-water lobe reservoirs. The model has three geological inputs: (1) the depositional element geometry, (2) the compositional exponent for element stacking pattern, and (3) the distribution of petrophysical properties with hierarchical trends conformable to the surfaces. A deep learning-based workflow is proposed for robust and non-iterative data conditioning. First, a generative adversarial network learns salient geometric features from the ensemble of the training rule-based models. Then, a new rule-based model is generated and a mask is applied to remove the model near local data along the well trajectories. Last, semantic image inpainting restores the mask with the optimum generative adversarial network realization that is consistent with both local data and the surrounding model. For the deep-water lobe example, the generative adversarial network learns the primary geological spatial features to generate reservoir realizations that reproduce hierarchical trend as well as the surface geometries and stacking pattern. Moreover, the trained generative adversarial network explores the latent reservoir manifold and identifies the ensemble of models to represent an uncertainty model. Semantic image inpainting determines the optimum replacement for the near-data mask that is consistent with the local data and the rest of the model. This work results in subsurface models that accurately reproduce reservoir heterogeneity, continuity, and spatial distribution of petrophysical parameters while honoring the local well data constraints.


Author(s):  
Weirong Liu ◽  
ChengruiJie CaoLiu ◽  
Chenwen Ren ◽  
Yulin Wei ◽  
Honglin Guo

Author(s):  
Zhao Qiu ◽  
Lin Yuan ◽  
Lihao Liu ◽  
Zheng Yuan ◽  
Tao Chen ◽  
...  

The image generation and completion model complement the missing area of the image to be repaired according to the image itself or the information of the image library so that the repaired image looks very natural and difficult to distinguish from the undamaged image. The difficulty of image generation and completion lies in the reasonableness of image semantics and the clear and true texture of the generated image. In this paper, a Wasserstein generative adversarial network with dilated convolution and deformable convolution (DDC-WGAN) is proposed for image completion. A deformable offset is added based on dilated convolution, which enlarges the receptive field and provides a more stable representation of geometric deformation. Experiments show that the DDC-WGAN method proposed in this paper has better performance in image generation and complementation than the traditional generative adversarial complementation network.


Sign in / Sign up

Export Citation Format

Share Document