scholarly journals 3D CFD modeling of air flow through a porous fence

Author(s):  
Yizhong Xu ◽  
Mohamed Y Mustafa ◽  
Jason Knight ◽  
Muhammad Virk ◽  
George Haritos
Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Author(s):  
J. Aidarinis ◽  
A. Goulas

A detailed computational study of the air-flow through the outer gap of the front bearing of an aero-engine is presented. The reason to carry out this study was to understand the flow through the bearing as a function of the operational parameters of the engine, which was necessary for the modeling of the flow in the whole bearing chamber. The complex geometry and the size of the bearing gap relative to the overall dimensions of the bearing chamber and the need for very precise and detailed information of the effect on the flow within the chamber of the bearing operational parameters, prohibited the solution of the flow through the gap together with the rest of the bearing chamber. A 3D modeling of the flow through the outer bearing gap, which included a section of the ball bearing, was performed. Functions relating the pressure drop of the air coming through the bearing gap and the tangential component of velocity of the air exiting the bearing region, to the mass of air through the gap of the ball bearing and the rotational speed of the shaft were developed. The effect of the lubrication oil within the bearing was modeled as an anisotropic porous medium with a predefined law. In order to acquire in a mathematical form the above relationships a series of computational runs were performed. These relationships, in the form of second order curves, were subsequently introduced to the model of the bearing chamber as described by Aidarinis and Goulas (2014, “Enhanced CFD Modeling and LDA Measurements for the Air-Flow in an Aero Engine Front Bearing Chamber (Part I),” ASME Paper No. GT2014-26060). The constants of the relationships were derived through comparisons of the calculations with the experimental data. From the analysis, it was concluded that the pressure drop across the bearing increases with the square of the rotational speed of the shaft with the mass flow of air through the ball bearing as a parameter and vice versa. For this particular ball bearing, there is a region where, for any combination of rotational speed of the shaft and pressure drop through the bearing, there is no flow of air through the bearing. In this paper the detailed modeling methodology, the computational flow field, the boundary conditions and finally the results are presented and discussed.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Sadhana ◽  
2007 ◽  
Vol 32 (4) ◽  
pp. 347-363 ◽  
Author(s):  
S. R. Kale ◽  
S. V. Veeravalli ◽  
H. D. Punekar ◽  
M. M. Yelmule
Keyword(s):  
Air Flow ◽  

1981 ◽  
Vol 24 (4) ◽  
pp. 1010-1013 ◽  
Author(s):  
Pitam Chandra ◽  
Louis D. Albright ◽  
Gerald E. Wilson
Keyword(s):  
Air Flow ◽  

Sign in / Sign up

Export Citation Format

Share Document