Enhanced Computational Fluid Dynamics Modeling and Laser Doppler Anemometer Measurements for the Air-Flow in an Aero-engine Front Bearing Chamber—Part II

Author(s):  
J. Aidarinis ◽  
A. Goulas

A detailed computational study of the air-flow through the outer gap of the front bearing of an aero-engine is presented. The reason to carry out this study was to understand the flow through the bearing as a function of the operational parameters of the engine, which was necessary for the modeling of the flow in the whole bearing chamber. The complex geometry and the size of the bearing gap relative to the overall dimensions of the bearing chamber and the need for very precise and detailed information of the effect on the flow within the chamber of the bearing operational parameters, prohibited the solution of the flow through the gap together with the rest of the bearing chamber. A 3D modeling of the flow through the outer bearing gap, which included a section of the ball bearing, was performed. Functions relating the pressure drop of the air coming through the bearing gap and the tangential component of velocity of the air exiting the bearing region, to the mass of air through the gap of the ball bearing and the rotational speed of the shaft were developed. The effect of the lubrication oil within the bearing was modeled as an anisotropic porous medium with a predefined law. In order to acquire in a mathematical form the above relationships a series of computational runs were performed. These relationships, in the form of second order curves, were subsequently introduced to the model of the bearing chamber as described by Aidarinis and Goulas (2014, “Enhanced CFD Modeling and LDA Measurements for the Air-Flow in an Aero Engine Front Bearing Chamber (Part I),” ASME Paper No. GT2014-26060). The constants of the relationships were derived through comparisons of the calculations with the experimental data. From the analysis, it was concluded that the pressure drop across the bearing increases with the square of the rotational speed of the shaft with the mass flow of air through the ball bearing as a parameter and vice versa. For this particular ball bearing, there is a region where, for any combination of rotational speed of the shaft and pressure drop through the bearing, there is no flow of air through the bearing. In this paper the detailed modeling methodology, the computational flow field, the boundary conditions and finally the results are presented and discussed.

Author(s):  
J. Aidarinis ◽  
A. Goulas

A detailed computational study of the air-flow through the outer gap of the front bearing of an aero-engine is presented. The reason to carry out this study was to understand the flow through the bearing as a function of the operational parameters of the engine, which was necessary for the modeling of the flow in the whole bearing chamber. The complex geometry and the size of the bearing gap relative to the overall dimensions of the bearing chamber and the need for very precise and detailed information of the effect on the flow within the chamber of the bearing operational parameters, prohibited the solution of the flow through the gap together with the rest of the bearing chamber. A 3-D modeling of the flow through the outer bearing gap, which included a section of the ball bearing, was performed. Functions relating the pressure drop of the air coming through the bearing gap and the tangential component of velocity of the air exiting the bearing region, to the mass of air through the gap of the ball bearing and the rotational speed of the shaft were developed. The effect of the lubrication oil within the bearing was modeled as an anisotropic porous medium with a predefined law. In order to acquire in a mathematical form the above relationships a series of computational runs were performed. These relationships, in the form of second order curves, were subsequently introduced to the model of the bearing chamber as described in [1]. The constants of the relationships were derived through comparisons of the calculations with the experimental data. From the analysis it was concluded that the pressure drop across the bearing increases with the square of the rotational speed of the shaft with the mass flow of air through the ball bearing as a parameter and vice versa. For this particular ball bearing there is a region where, for any combination of rotational speed of the shaft and pressure drop through the bearing, there is no flow of air through the bearing. In this paper the detailed modeling methodology, the computational flow field, the boundary conditions and finally the results are presented and discussed.


Author(s):  
J. Aidarinis ◽  
A. Goulas

Modern aero-engine development requires also a gradual increase in the overall effectiveness of lubrication systems. This particularly applies to bearing chambers where a complex two-phase flow is formed by the interaction of the sealing air and the lubrication oil. It is important to increase the level of understanding of the flow field inside the bearing chamber and to develop engineering tools in order to optimize its design and improve its performance. To achieve this an experimental and a computational study of the whole front bearing chamber were carried out for a range of shaft rotational speeds and sealing air mass flow. The experimental measurements of the air velocity inside the chamber were carried out using a Laser Doppler Anemometer (LDA) in two-phase air/oil flow conditions. The experimental facility is a 1:1 scale model of the front bearing chamber of an aero-engine. Computational 3D modeling of the bearing chamber was performed. The bearing gap and the presence of lubrication oil was modeled as an anisotropic porous medium with functions relating the pressure loss of the air coming through the gap and the tangential component of velocity of the air exiting the gap of the ball bearing with the air-flow rate through the gap and the rotational speed of the shaft. The methodology to obtain the above mentioned functions and the results of the detailed study are given in [1]. The enhanced computational model of the chamber implementing the law of pressure drop of the ‘lubricated’ bearing and the function of modeling the tangential velocity of the air exiting the bearing, was used to calculate the flow field for the full range of the measurements. A limiting curve dividing the operational map of the bearing chamber into two areas was predicted. Large vortical and swirling structures dominate the flow and they vary in size according to the position of the operation point relative to the limiting curve. Operation above the limiting curve leads to flow classified as type I with air going through the ball bearing while for operation below the limiting curve line the flow is classified as type II, there is no air-flow through the bearing gap.


1981 ◽  
Vol 24 (4) ◽  
pp. 1010-1013 ◽  
Author(s):  
Pitam Chandra ◽  
Louis D. Albright ◽  
Gerald E. Wilson
Keyword(s):  
Air Flow ◽  

Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Author(s):  
Yizhong Xu ◽  
Mohamed Y Mustafa ◽  
Jason Knight ◽  
Muhammad Virk ◽  
George Haritos

Author(s):  
J. Aidarinis ◽  
A. Goulas

Modern aero-engine development requires also a gradual increase in the overall effectiveness of lubrication systems. This particularly applies to bearing chambers where a complex two-phase flow is formed by the interaction of the sealing air and the lubrication oil. It is important to increase the level of understanding of the flow field inside the bearing chamber and to develop engineering tools in order to optimize its design and improve its performance. To achieve this, an experimental and a computational study of the whole front bearing chamber were carried out for a range of shaft rotational speeds and sealing air mass flow. The experimental measurements of the air velocity inside the chamber were carried out using a laser Doppler anemometer (LDA) in two-phase air/oil-flow conditions. The experimental facility is a 1:1 scale model of the front bearing chamber of an aero-engine. Computational 3D modeling of the bearing chamber was performed. The bearing gap and the presence of lubrication oil were modeled as an anisotropic porous medium with functions relating the pressure loss of the air coming through the gap and the tangential component of velocity of the air exiting the gap of the ball bearing with the air-flow rate through the gap and the rotational speed of the shaft. The methodology to obtain the above mentioned functions and the results of the detailed study are given (Aidarinis, J., and Goulas, A., 2014, “Enhanced CFD Modeling and LDA Measurements for the Air-Flow in an Aero Engine Front Bearing Chamber: Part II,” ASME Paper No. GT2014-26062). The enhanced computational model of the chamber implementing the law of pressure drop of the “lubricated” bearing and the function of modeling the tangential velocity of the air exiting the bearing was used to calculate the flow field for the full range of the measurements. A limiting curve dividing the operational map of the bearing chamber into two areas was predicted. Large vortical and swirling structures dominate the flow and they vary in size according to the position of the operation point relative to the limiting curve. Operation above the limiting curve leads to flow classified as type I with air going through the ball bearing while for operation below the limiting curve line the flow is classified as type II, there is no air-flow through the bearing gap.


Author(s):  
J. Aidarinis ◽  
D. Missirlis ◽  
K. Yakinthos ◽  
A. Goulas

The constant development of aero engines towards lighter but yet more compact designs, without decreasing their efficiency, has led to gradually increased demands of the lubrication systems, such as the bearing chambers of the aero engine. For this reason, it is of particular importance to increase our level of understanding of the flow field inside the bearing chambers in order to optimize its design and performance. The flow field in such cases is of a complicated nature since there is a strong interaction between air-flow and lubricant oil together with the geometrical configurations and the shaft rotational speed inside the bearing chamber. The behavior of this interaction must be investigated in order to understand the flow field development inside the aero engine bearing and, at a next step, optimize its performance in relation to the lubrication and heat transfer capabilities. Such an effort is presented in this work where an investigation of the air-flow field development inside the front bearing chamber of an aero engine is attempted. The front bearing chamber is divided in two separate smaller sections where the flow passes from the first section partially through the bearing and the holding structure, to the second one where the vent and the scavenge are placed. The investigation was performed with the combined use of experimental measurements and Computational Fluid Dynamics (CFD) modeling. The experimental measurements were carried out with the use of a Laser Doppler Anemometry (LDA) system in an experimental rig modeling the front bearing chamber of an aero engine for real operating conditions taking into account both air-flow and lubricant oil-flow and for a varying number of shaft rotating speeds. The CFD modeling was performed with the use of a commercial CFD package. The air-flow inside the bearing was modeled with the adoption of a porous medium assumption. The experimental measurements and the CFD computations presented similar flow patterns and satisfactory quantitative agreement. At the same time the effect of the important parameters such as the air and oil mass flow together with the shaft rotation speed and the effect of the chamber inside geometry were identified. These conclusions can be exploited in future attempts in combination with the developed CFD model, in order to optimize the efficiency of the lubricant and cooling system. The latter forms the main target of this work which is the development of a useful engineering tool capable of predicting the flow field inside the aero engine bearing so as to be used for optimization efforts.


Sign in / Sign up

Export Citation Format

Share Document