Volume 9: Micro- and Nano-Systems Engineering and Packaging, Parts A and B
Latest Publications


TOTAL DOCUMENTS

161
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845257

Author(s):  
Suchismita Sarangi ◽  
Karthik K. Bodla ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

Conventional microchannel heat sinks provide good heat dissipation capability but are associated with high pressure drop and corresponding pumping power. The use of a manifold system that distributes the flow into the microchannels through multiple, alternating inlet and outlet pairs is investigated here. This manifold arrangement greatly reduces the pressure drop incurred due to the smaller flow paths, while simultaneously increasing the heat transfer coefficient by tripping the thermal boundary layers. A three-dimensional numerical model is developed and validated, to study the effect of various geometric parameters on the performance of the manifold microchannel heat sink. Apart from a deterministic analysis, a probabilistic optimization study is also performed. In the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic optimization approach yields an optimal design that is also robust and reliable. Uncertainty-based optimization also yields auxiliary information regarding local and global sensitivities and helps identify the input parameters to which outputs are most sensitive. This information can be used to design improved experiments targeted at the most sensitive inputs. Optimization under uncertainty also provides a quantitative estimate of the allowable uncertainty in input parameters for an acceptable uncertainty in the relevant output parameters. The optimal geometric design parameters with uncertainties that maximize heat transfer coefficient while minimizing pressure drop for fixed input conditions are identified for a manifold microchannel heat sink. A comparison between the deterministic and probabilistic optimization results is also presented.


Author(s):  
Mohammad R. Aligoodarz ◽  
Mohammad Reza Soleimani Tehrani ◽  
Hadi Karrabi ◽  
Mohammad R. Roshani

Turbo machineries including compressors performance degrades over the period of operation and deviates from design levels due to causes including dust entrance into the compressor, blades mechanical damage, erosion and corrosion. These lead to reduction in compressor performance, efficiency and pressure ratio. Subsequently gas turbine performance is affected since their operation sate is correlated. In this study the numerical investigation of common causes that determine geometric characteristics of a 2-stage centrifugal compressor running in a gas station, including blades fouling and corrosion is performed. 3D Numerical modeling is implemented along with utilization of Shear Stress Transport (SST) turbulence model and independency from the grids is verified.


Author(s):  
Michael F. P. Bifano ◽  
Jungkyu Park ◽  
Vikas Prakash

In the present study, classical MD simulations using reverse non-equilibrium molecular dynamics with the AIREBO interatomic potential are used to investigate the sensitivity of thermal conductivity in SWCNTs to side-wall defect concentration and heat-treatment. Two types of defects are investigated. First, the thermal conductivity of (6,6) SWCNTs is obtained as a function of concentration of chemisorbed hydrogen adatoms. Secondly, the thermal conductivity is obtained as a function of point-vacancy concentrations. The results of the studies show that 2 atom% of hydrogenation and 1.5–2% vacancy concentrations have very similar detrimental effects on the thermal conductivity of SWCNT. Vacancy repair is evident with heat treatment, and heat-treatments at 3000°C for up to 22 ns are found to transform point vacancies into various types of non-hexagonal side-wall defects; this vacancy repair is accompanied by a ca. 10% increase in thermal conductivity. Thermal conductivity measurements in both heat-treated and non-heat treated chemical vapor deposition grown MWCNTs are also reviewed. The results suggest that CNT thermal conductivity can be drastically increased if measures are taken to remove common defects from the SWCNT side-walls.


Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Author(s):  
Bahador Farshchian ◽  
Junseo Choi ◽  
Sunggook Park

This paper presents the fabrication of a 3D microchannel whose sidewalls and bottom surface are patterned with ratchets using a modified 3D molding process. In the modified 3D molding process the surface of poly(methyl methacrylate) (PMMA) is first patterned using a brass mold having ratchet structures. Then PDMS prepolymer was spin coated over the surface of micropatterned PMMA and cured followed by the primary molding using a brass mold having a T-conjunction protrusion. After primary molding demolding was done by first demolding the brass mold and then peeling off PDMS stamp from PMMA substrate. By setting a 45° angle between direction of ratchets patterned on the surface of PMMA and the brass mold protrusion prior to primary molding 45° slanted ratchets were formed on the sidewall and bottom surface of microchannel using the modified 3D molding. The scanning electron microscope (SEM) micrographs show a successful integration of micropatterns inside the microchannel. Holes were drilled in the inlet and outlet area of the 3D channel before bonding. A solvent bonding technique was used for bonding of 3D channel to a plain cover plate. After bonding capillary tubes were inserted into the holes and glued to the chip using an epoxy glue. For characterization of mixing fluorescence intensity was quantified in the 3D microchannel as deionized water and fluorescein dye injected from different inlets of 3D micromixer were mixed along the 3D microchannel and mixing efficiency was calculated. The results were compared with the data obtained for similar microdevice whose surfaces were not patterned. The results demonstrate at a specific flow rate a faster mixing occurs in a microdevice whose sidewall and bottom surface are patterned with slanted 45° ratchets.


Author(s):  
Gladys Garza ◽  
Peiwen Li ◽  
Douglas Loy

A novel design of micro-fluidic structure has been proposed to facilitate passive methanol supply and ventilation of carbon dioxide in direct methanol fuel cells (DMFC). Experimental study was conducted for three in-house fabricated cells which have different membrane-electrode-assemblies (MEA) and cathode-side air-breathing current collectors. Low rate of passive methanol supply and control was accomplished through capillary-force-driven mass transfer in the in-plane of carbon paper wicks. The low methanol supply rate using this passive method only meets the need of fuel of the electrochemical reaction, and there is almost no surplus methanol that could cross over the membrane. The micro-fluidic structure on the anode plate also makes passive removal of the CO2 gas from the electrochemical reaction. The influence of the concentration of methanol and cell operation temperature was examined and compared in the study. The results reveal very promising performance in the passive DMFCs when a methanol concentration is above 8M.


Author(s):  
W. B. Cai ◽  
F. Wang ◽  
Y. P. Miao ◽  
J. Wei ◽  
K. L. Zhang

Tungsten-doped vanadium oxide has been proved to decrease the transition temperature, which enables vanadium oxide film to be more promising. Besides, the nano-structure can improve the properties of the film when compared with the as-deposited film. In this letter, a nano-structure tungsten-doped vanadium oxide film is proposed. Tungsten-doped vanadium oxide film was deposited on the Si (400) substrate by DC magnetron sputtering. The doping level was controlled by adjusting the sputtering time. Then the as-deposited film was annealed to form a nano-structure film at the temperature of 500 °C for 1 h in high vacuum. The morphology and crystalline structure of such films were characterized by AFM and XRD, respectively. Optical properties of the films were tested by FTIR, mainly comparing the infrared transmission before and after annealing.


Author(s):  
Matthew J. Combs ◽  
S. Manian Ramkumar ◽  
Satish Kandlikar

The continued desire to utilize an alternative to lead-based solder materials for electrical interconnections has led to significant research interest in Anisotropic Conductive Adhesives (ACAs). The use of ACAs in electrical connections creates bonds using a combination of metal particles and epoxies to replace solder. The novel ACA discussed in this paper allows for bonds to be created through aligning columns of conductive particles along the Z-axis. These columns are formed by the application of a magnetic field, during the curing process. The benefit of this novel ACA is that it does not require precise printing of the adhesive on pads and also enables the mass curing without creating shorts in the circuitry. This paper will present the findings of the thermal conductivity performance tests using the novel ACA and its applicability as a thermal interface material and for assembling bottom termination components, power devices, etc. The columns that act as electrical conduction paths also contribute towards the thermal conductivity. The thermal conductivity of the novel ACA was measured utilizing a system that is similar to that in ASTM (American Society of Testing Materials) D5470 standard. The goal was to examine the influence of Bond Line Thickness (BLT), particle loading densities, particle diameters and adhesive matrix curing conditions on the electrical and thermal performance of the novel ACA. This paper will also present a numerical model to describe the thermal behavior of the novel ACA. The novel ACA’s applicability for PCB-level assembly has also been successfully demonstrated by RIT, including base material characterization, effect of process parameters, failures, and long-term reliability. Reliability testing included the investigation of the assembly performance in temperature and humidity aging, thermal aging, air-to-air thermal cycling, and drop testing.


Author(s):  
Nilgoon Zarei ◽  
Albert M. Leung ◽  
John D. Jones

This paper reports modeling a new design of Thermal MEMS gyroscope through the use of the Comsol Multiphysics software package. Being very small and having no movable parts have made thermal MEMS gyroscope very practical. Previously designed Thermal MEMS gyroscope shows some limitation such as being vulnerable to gravity force. Finding a technique to increase the range of thermal MEMS gyroscope reliability motivated us to come up with a new design that we will refer to as the ‘Forced Convection MEMS gyroscope’. A two-dimensional finite-element model of the device has been developed to investigate its performance. An external force has been introduced to the system to create a higher-velocity hot gas stream that will be deviated more in response to rotation. The external force should be great enough that convection currents resulting from gravity or acceleration will have minimal impact on the gyroscope sensitivity. A heating element can still be used, but its primary purpose is now to warm the flowing gas so that it can be detected by the sensors. In this paper we will also show that, in order to completely eliminate the impact of gravity and increase the sensitivity of the gyroscope, it is possible to eliminate the heaters entirely and instead use heated sensors to detect gas currents. In other words, the sensors are working as hot-wire anemometers. Our simulations suggest that this design variant results in higher sensitivity. We have also carried out optimization studies to identify the best location for the heaters and sensors. A prototype of this device has been fabricated based on MEMS techniques, and an external pump is used to produce an oscillating gas flow within the device.


Sign in / Sign up

Export Citation Format

Share Document